On J-Cone Metric Spaces over a Banach Algebra and Some Fixed-Point Theorems

被引:4
作者
Fernandez, Jerolina [1 ]
Malviya, Neeraj [2 ]
Parvaneh, Vahid [3 ,4 ]
Aydi, Hassen [4 ,5 ]
Mohammadi, Babak [6 ]
机构
[1] Bhopal Sch Social Sci, Dept Sci, Bhopal 462024, MP, India
[2] Govt Coll, Dept Math, Timarni, MP, India
[3] Islamic Azad Univ, Gilan E Gharb Branch, Dept Math, Gilan E Gharb, Iran
[4] Univ Sousse, Super Informat & Tech Commun, H Sousse 4000, Tunisia
[5] China Med Univ, China Med Univ Hosp, Taichung 40402, Taiwan
[6] Islamic Azad Univ, Marand Branch, Dept Math, Marand, Iran
关键词
D O I
10.1155/2021/6620083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper, we define J-cone metric spaces over a Banach algebra which is a generalization of G(pb)-metric space (G(pb)-MS) and cone metric space (CMS) over a Banach algebra. We give new fixed-point theorems assuring generalized contractive and expansive maps without continuity. Examples and an application are given at the end to support the usability of our results.
引用
收藏
页数:9
相关论文
共 14 条
  • [1] Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type
    Ahmad, Manzoor
    Zada, Akbar
    Alzabut, Jehad
    [J]. DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 283 - 295
  • [2] [Anonymous], 2013, Asian J. Math. Appl.
  • [3] A new approach to G-metric and related fixed point theorems
    Asadi, Mehdi
    Karapinar, Erdal
    Salimi, Peyman
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [4] The pb-Cone Metric Spaces Over Banach Algebra With Applications
    Fernandez, Jerolina
    Malviya, Neeraj
    Dolicanin-Dekic, Diana
    Pucic, Dzenis
    [J]. FILOMAT, 2020, 34 (03) : 983 - 998
  • [5] Cone b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2$$\end{document}-metric spaces over Banach algebra with applications
    Jerolina Fernandez
    Neeraj Malviya
    Kalpana Saxena
    [J]. São Paulo Journal of Mathematical Sciences, 2017, 11 (1) : 221 - 239
  • [6] Huang H., 2015, APPL MATH INF SCI, V9, P2983
  • [7] Cone metric spaces and fixed point theorems of contractive mappings
    Huang Long-Guang
    Zhang Xian
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 1468 - 1476
  • [8] A Unification of G-Metric, Partial Metric, and b-Metric Spaces
    Hussain, Nawab
    Roshan, Jamal Rezaei
    Parvaneh, Vahid
    Latif, Abdul
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] On cone metric spaces: A survey
    Jankovic, Slobodanka
    Kadelburg, Zoran
    Radenovic, Stojan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (07) : 2591 - 2601
  • [10] Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings
    Liu, Hao
    Xu, Shaoyuan
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2013,