Zero forcing propagation time on oriented graphs

被引:9
作者
Berliner, Adam [1 ]
Bozeman, Chassidy [2 ]
Butler, Steve [2 ]
Catral, Minerva [3 ]
Hogben, Leslie [2 ,4 ]
Kroschel, Brenda [5 ]
Lin, Jephian C. -H. [2 ]
Warnberg, Nathan [6 ]
Young, Michael [2 ]
机构
[1] St Olaf Coll, Dept Math Stat & Comp Sci, Northfield, MN 55057 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Xavier Univ, Dept Math & Comp Sci, Cincinnati, OH 45207 USA
[4] Amer Inst Math, 600 E Brokaw Rd, San Jose, CA 95112 USA
[5] Univ St Thomas, Dept Math, St Paul, MN 55105 USA
[6] Univ Wisconsin, Dept Math, La Crosse, WI 54601 USA
关键词
Zero forcing process; Propagation time; Oriented graphs; Hessenberg path; Throttling; MINIMUM RANK; NUMBER; CONTROLLABILITY;
D O I
10.1016/j.dam.2017.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zero forcing is an iterative coloring procedure on a graph that starts by initially coloring vertices white and blue and then repeatedly applies the following rule: if any blue vertex has a unique (out-)neighbor that is colored white, then that neighbor is forced to change color from white to blue. An initial set of blue vertices that can force the entire graph to blue is called a zero forcing set. In this paper we consider the minimum number of iterations needed for this color change rule to color all of the vertices blue, also known as the propagation time, for oriented graphs. We produce oriented graphs with both high and low propagation times, consider the possible propagation times for the orientations of a fixed graph, and look at balancing the size of a zero forcing set and the propagation time. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 59
页数:15
相关论文
共 19 条
[1]  
Aazami A., 2008, Hardness Results and Approximation Algorithms for Some Problems on Graphs
[2]   Upper bounds on the k-forcing number of a graph [J].
Amos, David ;
Caro, Yair ;
Davila, Randy ;
Pepper, Ryan .
DISCRETE APPLIED MATHEMATICS, 2015, 181 :1-10
[3]  
[Anonymous], 1998, An Atlas of Graphs
[4]   Zero forcing sets and the minimum rank of graphs [J].
Barioli, Francesco ;
Barrett, Wayne ;
Butler, Steve ;
Cioaba, Sebastian M. ;
Cvetkovic, Dragos ;
Fallat, Shaun M. ;
Godsil, Chris ;
Haemers, Willem ;
Hogben, Leslie ;
Mikkelson, Rana ;
Narayan, Sivaram ;
Pryporova, Olga ;
Sciriha, Irene ;
So, Wasin ;
Stevanovic, Dragan ;
van der Holst, Hein ;
Vander Meulen, Kevin N. ;
Wehe, Amy Wangsness .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1628-1648
[5]   ON THE MINIMUM RANK OF NOT NECESSARILY SYMMETRIC MATRICES: A PRELIMINARY STUDY [J].
Barioli, Francesco ;
Fallat, Shaun M. ;
Hall, H. Tracy ;
Hershkowitz, Daniel ;
Hogben, Leslie ;
Van der Holst, Hein ;
Shader, Bryan .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 :126-145
[6]  
Berliner A., 2015, INVOLVE, V8, P147
[7]   MINIMUM RANK, MAXIMUM NULLITY, AND ZERO FORCING NUMBER OF SIMPLE DIGRAPHS [J].
Berliner, Adam ;
Catral, Minerva ;
Hogben, Leslie ;
My Huynh ;
Lied, Kelsey ;
Young, Michael .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 :762-780
[8]   Zero Forcing, Linear and Quantum Controllability for Systems Evolving on Networks [J].
Burgarth, Daniel ;
D'Alessandro, Domenico ;
Hogben, Leslie ;
Severini, Simone ;
Young, Michael .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (09) :2349-2354
[9]   Full control by locally induced relaxation [J].
Burgarth, Daniel ;
Giovannetti, Vittorio .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[10]  
Butler S., SAGE PROGRAM DIGRAPH