scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis

被引:26
作者
Wang, Hai-Yun [1 ]
Zhao, Jian-Ping [2 ]
Su, Yan-Sen [3 ]
Zheng, Chun-Hou [3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] Xinjiang Univ, Inst Math & Phys, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[3] Anhui Univ, Sch Artificial Intelligence, Hefei 230039, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise reduction; Convolution; Computer architecture; Microprocessors; Sequential analysis; Encoding; Decoding; Clustering; scRNA-seq; denoising autoencoder (DAE); graph convolution network (GCN); CELL GENE-EXPRESSION; SINGLE;
D O I
10.1109/TCBB.2021.3126641
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying cell types is one of the main goals of single-cell RNA sequencing (scRNA-seq) analysis, and clustering is a common method for this item. However, the massive amount of data and the excess noise level bring challenge for single cell clustering. To address this challenge, in this paper, we introduced a novel method named single-cell clustering based on denoising autoencoder and graph convolution network (scCDG), which consists of two core models. The first model is a denoising autoencoder (DAE) used to fit the data distribution for data denoising. The second model is a graph autoencoder using graph convolution network (GCN), which projects the data into a low-dimensional space (compressed) preserving topological structure information and feature information in scRNA-seq data simultaneously. Extensive analysis on seven real scRNA-seq datasets demonstrate that scCDG outperforms state-of-the-art methods in some research sub-fields, including single cell clustering, visualization of transcriptome landscape, and trajectory inference.
引用
收藏
页码:3685 / 3694
页数:10
相关论文
共 30 条
[1]   Imputation of single-cell gene expression with an autoencoder neural network [J].
Badsha, Md Bahadur ;
Li, Rui ;
Liu, Boxiang ;
Li, Yang, I ;
Xian, Min ;
Banovich, Nicholas E. ;
Fu, Audrey Qiuyan .
QUANTITATIVE BIOLOGY, 2020, 8 (01) :78-94
[2]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[3]  
Du J, 2018, Arxiv, DOI arXiv:1710.10370
[4]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[5]   Graph Neural Networks in TensorFlow and Keras with Spektral [J].
Grattarola, Daniele ;
Alippi, Cesare .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (01) :99-106
[6]   CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform [J].
Huang, Ying ;
Zhu, Shiyang ;
Zhang, Huijuan ;
Liow, Tsung-Yang ;
Lo, Guo-Qiang .
OPTICS EXPRESS, 2013, 21 (10) :12790-12796
[7]  
Kiselev VY, 2017, NAT METHODS, V14, P483, DOI [10.1038/nmeth.4236, 10.1038/NMETH.4236]
[8]   Initialization is critical for preserving global data structure in both t-SNE and UMAP [J].
Kobak, Dmitry ;
Linderman, George C. .
NATURE BIOTECHNOLOGY, 2021, 39 (02) :156-157
[9]  
Hamilton WL, 2018, Arxiv, DOI arXiv:1706.02216
[10]   Comparative transcriptomic analysis of hematopoietic system between human and mouse by Microwell-seq [J].
Lai, Shujing ;
Huang, Wentao ;
Xu, Yang ;
Jiang, Mengmeng ;
Chen, Haide ;
Cheng, Chen ;
Lu, Yingru ;
Huang, He ;
Guo, Guoji ;
Han, Xiaoping .
CELL DISCOVERY, 2018, 4