Nanoporous silver nanorods as surface-enhanced Raman scattering substrates

被引:33
作者
Chen, Qiuyan [1 ]
Zhao, Liyan [1 ]
Liu, Hong [1 ]
Ding, Qianqian [1 ]
Jia, Chenghao [2 ,3 ]
Liao, Sihao [2 ,3 ]
Cheng, Ningtao [4 ]
Yue, Min [2 ,3 ]
Yang, Shikuan [1 ]
机构
[1] Zhejiang Univ, Inst Composites Sci Innovat, Sch Mat Sci & Engn, Hangzhou 310000, Peoples R China
[2] Zhejiang Univ, Dept Vet Med, Coll Anim Sci, Hangzhou 310058, Peoples R China
[3] Zhejiang Univ, Inst Vet Sci Dept Vet Med, Hangzhou 310058, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Canc Inst, Renji Hosp, State Key Lab Oncogenes & Related Genes,Sch Med, Shanghai 200127, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoporous silver nanorods; SERS; Sensor; Electrodeposition; Chemical reduction; ELECTROCHEMICAL DEPOSITION; PLASMON RESONANCE; SERS; ARRAYS; NANOPARTICLES; SPECTROSCOPY; MOLECULES; DIFFUSION; EVOLUTION; SPECTRUM;
D O I
10.1016/j.bios.2022.114004
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Structures with dense nanopores are desirable as surface-enhanced Raman scattering (SERS) sensing substrates because the nanopores can behave as both analyte containers and SERS-active sites (known as hot spots). Inspired by the dealloying process to prepare nanoporous structures through selectively removing active metals from their alloy, we developed a method to prepare nanoporous Ag nanorods through chemical reduction of the electrodeposited Ag7O8NO3 nanorods using a strong reducing agent (e.g., NaBH4). The length and the thickness of the Ag7O8NO3 nanorods could be controlled by the electrodeposition voltage and time. Nitrogen and oxygen elements were immediately removed from Ag7O8NO3 nanorods by the reducing agent, leaving behind a tremendous number of nanopores with a mean size of 20 nm, which can efficiently trap and enrich analytes. Meanwhile, the densely packed nanopores can behave as SERS hot spots to provide strong SERS enhancement. The nanoporous Ag nanorods as SERS substrates were used to sensitively detect adenine, spike glycoprotein, and polychlorinated biphenyls pollutants, as well as identify different types of bacteria. The simple fabrication process and the outstanding SERS performance of the nanoporous Ag nanorods make them promising candidates for SERS applications towards trace detection of pollutants, narcotics, food additives, and biomolecules.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Single Molecule Directivity Enhanced Raman Scattering using Nanoantennas [J].
Ahmed, Aftab ;
Gordon, Reuven .
NANO LETTERS, 2012, 12 (05) :2625-2630
[2]   Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications [J].
Akin, Merve Selen ;
Yilmaz, Mehmet ;
Babur, Esra ;
Ozdemir, Betul ;
Erdogan, Hakan ;
Tamer, Ugur ;
Demirel, Gokhan .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (30) :4894-4900
[3]   Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J].
Alvarez-Puebla, Ramon A. ;
Agarwal, Ashish ;
Manna, Pramit ;
Khanal, Bishnu P. ;
Aldeanueva-Potel, Paula ;
Carbo-Argibay, Enrique ;
Pazos-Perez, Nicolas ;
Vigderman, Leonid ;
Zubarev, Eugene R. ;
Kotov, Nicholas A. ;
Liz-Marzan, Luis M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (20) :8157-8161
[4]   STUDIES OF VIRUS STRUCTURE BY LASER RAMAN-SPECTROSCOPY .34. RAMAN-SPECTROSCOPY OF FILAMENTOUS BACTERIOPHAGE-FF (FD, M13, F1) INCORPORATING SPECIFICALLY-DEUTERATED ALANINE AND TRYPTOPHAN SIDE-CHAINS - ASSIGNMENTS AND STRUCTURAL INTERPRETATION [J].
AUBREY, KL ;
THOMAS, GJ .
BIOPHYSICAL JOURNAL, 1991, 60 (06) :1337-1349
[5]   Expanding applications of SERS through versatile nanomaterials engineering [J].
Cardinal, M. Fernanda ;
Ende, Emma Vander ;
Hackler, Ryan A. ;
McAnally, Michael O. ;
Stair, Peter C. ;
Schatz, George C. ;
Van Duyne, Richard P. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :3886-3903
[6]   Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates [J].
Chen, Bin ;
Meng, Guowen ;
Huang, Qing ;
Huang, Zhulin ;
Xu, Qiaoling ;
Zhu, Chuhong ;
Qian, Yiwu ;
Ding, Yi .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15667-15675
[7]   High spatial resolution nanoslit SERS for single-molecule nucleobase sensing [J].
Chen, Chang ;
Li, Yi ;
Kerman, Sarp ;
Neutens, Pieter ;
Willems, Kherim ;
Cornelissen, Sven ;
Lagae, Liesbet ;
Stakenborg, Tim ;
Van Dorpe, Pol .
NATURE COMMUNICATIONS, 2018, 9
[8]   Hotspot-Induced Transformation of Surface-Enhanced Raman Scattering Fingerprints [J].
Chen, Tao ;
Wang, Hong ;
Chen, Gang ;
Wang, Yong ;
Feng, Yuhua ;
Teo, Wei Shan ;
Wu, Tom ;
Chen, Hongyu .
ACS NANO, 2010, 4 (06) :3087-3094
[9]   Hierarchical self-assembly of random mica nanosheet-stabilized silver nanoparticles into flower microstructures for highly sensitive SERS substrates [J].
Chiu, Chih-Wei ;
Lin, Po-Hsien .
RSC ADVANCES, 2015, 5 (105) :86522-86528
[10]   Quantitative and Sensitive SERS Platform with Analyte Enrichment and Filtration Function [J].
Ding, Qianqian ;
Wang, Jing ;
Chen, Xueyan ;
Liu, Hong ;
Li, Quanjiang ;
Wang, Yanling ;
Yang, Shikuan .
NANO LETTERS, 2020, 20 (10) :7304-7312