Isotriviality is equivalent to potential good reduction for endomorphisms of PN over function fields

被引:25
作者
Petsche, Clayton [1 ]
Szpiro, Lucien [1 ]
Tepper, Michael [1 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
关键词
Algebraic dynamics; Algebraic geometry; Non-archimedean analysis; Function fields; RATIONAL MAPS; DYNAMICS; POINTS;
D O I
10.1016/j.jalgebra.2008.11.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K = k(C) be the function field of a complete non-singular curve C over an arbitrary field k. The main result of this paper states that a morphism phi : P-K(N) -> P-K(N) is isotrivial if and only if it has potential good reduction at all places upsilon of K; this generalizes results of Benedetto for polynomial maps on P-K(1) and Baker for arbitrary rational maps on P-K(1). We offer two proofs: the first uses algebraic geometry and geometric invariant theory, and it is new even in the case N = 1. The second proof uses non-archimedean analysis and dynamics, and it more directly generalizes the proofs of Benedetto and Baker. We will also give two applications. The first states that an endomorphism of P-K(N) of degree at least two is isotrivial if and only if it has an isotrivial iterate. The second gives a dynamical criterion for whether (after base change) a locally free coherent sheaf epsilon of rank N + 1 on C decomposes as a direct sum L circle plus...circle plus L of N + 1 copies of the same invertible sheaf L. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3345 / 3365
页数:21
相关论文
共 23 条
[1]   On endomorphisms of projective bundles [J].
Amerik, E .
MANUSCRIPTA MATHEMATICA, 2003, 111 (01) :17-28
[2]  
[Anonymous], 2004, ELEMENTARY THEORY FR
[3]   A finiteness theorem for canonical heights attached to rational maps over function fields [J].
Baker, Matthew .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 626 :205-233
[4]   Equidistribution of small points, rational dynamics, and potential theory [J].
Baker, Matthew H. ;
Rumely, Robert .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (03) :625-688
[5]  
Benedetto RL, 2005, INT MATH RES NOTICES, V2005, P3855
[6]   Liapounoff exponents and distribution of periodic points of an endomorphism of CPk [J].
Briend, JY ;
Duval, J .
ACTA MATHEMATICA, 1999, 182 (02) :143-157
[7]  
CARTAN H, 1958, SEM HENRI CARTAN, V10
[8]  
CHAMBERTLOIR A, 2006, PANORAMAS S IN PRESS
[9]   DIFFERENCE FIELDS AND DESCENT IN ALGEBRAIC DYNAMICS. II [J].
Chatzidakis, Zoe ;
Hrushovski, Ehud .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (04) :687-704
[10]   A CHAIN RULE FOR MULTIVARIABLE RESULTANTS [J].
CHENG, CCA ;
MCKAY, JH ;
WANG, SSS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1037-1047