Motor strength classification with machine learning approaches applied to anatomical neuroimages

被引:0
作者
Bardozzo, Francesco [1 ]
Uribe, Sebastian Cano [1 ,2 ]
Russo, Andrea G. [3 ]
Castano, Mateo Jimenez [1 ,2 ]
Priscolli, Mattia Delli [1 ]
Esposito, Fabrizio [3 ]
Tagliaferri, Roberto [1 ]
机构
[1] Univ Salerno, DISA MIS, Neuronelab, Salerno, Italy
[2] Fac Engn UTP, Pereira, Colombia
[3] Univ Salerno, DIPMED, Salerno, Italy
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
Pattern recognition; motor-strength; machine learning; classification; feature extraction; FEATURE-EXTRACTION; INFORMATION;
D O I
10.1109/ijcnn48605.2020.9207471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pattern recognition methods for classification are leveraged in the field of computational anatomy and neuroimaging showing high reliability and applicability. Body-brain human functions related to the motor-strength features can be discovered by data integration and analysis of 3D brain images, phenotype and behavioural information. This work is focused on the study of feature-based interplay of 3D brain structures with motor-strength information. In particular, this research introduces an ensemble of supervised machine learning approaches for a binary motor-strength classification (strong vs weak) based on 3D brain anatomical features. The proposed approach has been evaluated on 1113 case studies by obtaining well-defined features and reaching the average accuracy of 72% on the test set.
引用
收藏
页数:8
相关论文
共 30 条
  • [11] The Mutual Inspirations of Machine Learning and Neuroscience
    Helmstaedter, Moritz
    [J]. NEURON, 2015, 86 (01) : 25 - 28
  • [12] Feature extraction using information-theoretic learning
    Hild, Kenneth E., II
    Erdogmus, Deniz
    Torkkola, Kari
    Principe, Jose C.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (09) : 1385 - 1392
  • [13] Hyvarinen A, 1998, ADV NEUR IN, V10, P273
  • [14] Kraskov A, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066138
  • [15] Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach
    Lavagnino, L.
    Amianto, F.
    Mwangi, B.
    D'Agata, F.
    Spalatro, A.
    Zunta-Soares, G. B.
    Daga, G. Abbate
    Mortara, P.
    Fassino, S.
    Soares, J. C.
    [J]. PSYCHOLOGICAL MEDICINE, 2015, 45 (13) : 2805 - 2812
  • [16] Maximization of mutual information for supervised linear feature extraction
    Leiva-Murillo, Jose Miguel
    Artes-Rodriguez, Antonio
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (05): : 1433 - 1441
  • [17] Marcus Daniel S, 2011, Front Neuroinform, V5, P4, DOI 10.3389/fninf.2011.00004
  • [18] Handgrip Strength Is Associated with Poorer Cognitive Functioning in Aging Americans
    McGrath, Ryan
    Robinson-Lane, Sheria G.
    Cook, Summer
    Clark, Brian C.
    Herrmann, Stephen
    O'Connor, Melissa Lunsman
    Hackney, Kyle J.
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2019, 70 (04) : 1187 - 1196
  • [19] McKinney W., 2011, Python for High Performance and Scientific Computing, V14, P1, DOI DOI 10.1002/MMCE.20381
  • [20] A Review of Feature Reduction Techniques in Neuroimaging
    Mwangi, Benson
    Tian, Tian Siva
    Soares, Jair C.
    [J]. NEUROINFORMATICS, 2014, 12 (02) : 229 - 244