Motor strength classification with machine learning approaches applied to anatomical neuroimages

被引:0
作者
Bardozzo, Francesco [1 ]
Uribe, Sebastian Cano [1 ,2 ]
Russo, Andrea G. [3 ]
Castano, Mateo Jimenez [1 ,2 ]
Priscolli, Mattia Delli [1 ]
Esposito, Fabrizio [3 ]
Tagliaferri, Roberto [1 ]
机构
[1] Univ Salerno, DISA MIS, Neuronelab, Salerno, Italy
[2] Fac Engn UTP, Pereira, Colombia
[3] Univ Salerno, DIPMED, Salerno, Italy
来源
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2020年
关键词
Pattern recognition; motor-strength; machine learning; classification; feature extraction; FEATURE-EXTRACTION; INFORMATION;
D O I
10.1109/ijcnn48605.2020.9207471
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pattern recognition methods for classification are leveraged in the field of computational anatomy and neuroimaging showing high reliability and applicability. Body-brain human functions related to the motor-strength features can be discovered by data integration and analysis of 3D brain images, phenotype and behavioural information. This work is focused on the study of feature-based interplay of 3D brain structures with motor-strength information. In particular, this research introduces an ensemble of supervised machine learning approaches for a binary motor-strength classification (strong vs weak) based on 3D brain anatomical features. The proposed approach has been evaluated on 1113 case studies by obtaining well-defined features and reaching the average accuracy of 72% on the test set.
引用
收藏
页数:8
相关论文
共 30 条
  • [1] Akhila JA, 2017, 2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), P1446, DOI 10.1109/ICICICT1.2017.8342782
  • [2] Function in the human connectome: Task-fMRI and individual differences in behavior
    Barch, Deanna M.
    Burgess, Gregory C.
    Harms, Michael P.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    Corbetta, Maurizio
    Glasser, Matthew F.
    Curtiss, Sandra
    Dixit, Sachin
    Feldt, Cindy
    Nolan, Dan
    Bryant, Edward
    Hartley, Tucker
    Footer, Owen
    Bjork, James M.
    Poldrack, Russ
    Smith, Steve
    Johansen-Berg, Heidi
    Snyder, Abraham Z.
    Van Essen, David C.
    [J]. NEUROIMAGE, 2013, 80 : 169 - 189
  • [3] Chumerin Nikolay, 2006, Proceedings of the 2006 IEEE Signal Processing Society Workshop, P343
  • [4] Corder GW., 2011, Nonparametric statistics for nonstatisticians
  • [5] Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
    Destrieux, Christophe
    Fischl, Bruce
    Dale, Anders
    Halgren, Eric
    [J]. NEUROIMAGE, 2010, 53 (01) : 1 - 15
  • [6] Grip Strength Is Associated With Cognitive Performance in Schizophrenia and the General Population: A UK Biobank Study of 476 559 Participants
    Firth, Joseph
    Stubbs, Brendon
    Vancampfort, Davy
    Firth, Josh A.
    Large, Matthew
    Rosenbaum, Simon
    Hallgren, Mats
    Ward, Philip B.
    Sarris, Jerome
    Yung, Alison R.
    [J]. SCHIZOPHRENIA BULLETIN, 2018, 44 (04) : 728 - 736
  • [7] Measuring the thickness of the human cerebral cortex from magnetic resonance images
    Fischl, B
    Dale, AM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) : 11050 - 11055
  • [8] Consensus-based feature extraction in rs-fMRI data analysis
    Galdi, Paola
    Fratello, Michele
    Trojsi, Francesca
    Russo, Antonio
    Tedeschi, Gioacchino
    Tagliaferri, Roberto
    Esposito, Fabrizio
    [J]. SOFT COMPUTING, 2018, 22 (11) : 3785 - 3795
  • [9] NIH Toolbox for Assessment of Neurological and Behavioral Function
    Gershon, Richard C.
    Wagster, Molly V.
    Hendrie, Hugh C.
    Fox, Nathan A.
    Cook, Karon F.
    Nowinski, Cindy J.
    [J]. NEUROLOGY, 2013, 80 : S2 - S6
  • [10] Normality Tests for Statistical Analysis: A Guide for Non-Statisticians
    Ghasemi, Asghar
    Zahediasl, Saleh
    [J]. INTERNATIONAL JOURNAL OF ENDOCRINOLOGY AND METABOLISM, 2012, 10 (02) : 486 - 489