Development and evaluation of a core genome multilocus sequence typing scheme for Paenibacillus larvae, the deadly American foulbrood pathogen of honeybees

被引:7
作者
Bertolotti, Alicia C. [1 ]
Forsgren, Eva [2 ]
Schaefer, Marc O. [3 ]
Sircoulomb, Fabrice [1 ]
Gaiani, Nicolas [1 ]
Ribiere-Chabert, Magali [1 ]
Paris, Laurianne [1 ]
Lucas, Pierrick [4 ]
de Boisseson, Claire [4 ]
Skarin, Joakim [5 ]
Riviere, Marie-Pierre [1 ]
机构
[1] Anses, Sophia Antipolis Lab, Unit Honey Bee Pathol, Sophia Antipolis, France
[2] Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden
[3] Friedrich Loeffler Inst, Fed Res Inst Anim Hlth, Greifswald, Insel Riems, Germany
[4] Anses, Ploufragan Plouzane Niort Lab, Unit Viral Genet & Biosafety, Ploufragan, France
[5] Natl Vet Inst, Dept Microbiol, Uppsala, Sweden
基金
瑞典研究理事会;
关键词
D O I
10.1111/1462-2920.15442
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Paenibacillus larvae is the causative agent of the fatal American foulbrood disease in honeybees (Apis mellifera). Strain identification is vital for preventing the spread of the disease. To date, the most accessible and robust scheme to identify strains is the multilocus sequence typing (MLST) method. However, this approach has limited resolution, especially for epidemiological studies. As the cost of whole-genome sequencing has decreased and as it becomes increasingly available to most laboratories, an extended MLST based on the core genome (cgMLST) presents a valuable tool for high-resolution investigations. In this study, we present a standardized, robust cgMLST scheme for P. larvae typing using whole-genome sequencing. A total of 333 genomes were used to identify, validate and evaluate 2419 core genes. The cgMLST allowed fine-scale differentiation between samples that had the same profile using traditional MLST and allowed for the characterization of strains impossible by MLST. The scheme was successfully used to trace a localized Swedish outbreak, where a cluster of 38 isolates was linked to a country-wide beekeeping operation. cgMLST greatly enhances the power of a traditional typing scheme, while preserving the same stability and standardization for sharing results and methods across different laboratories.
引用
收藏
页码:5042 / 5051
页数:10
相关论文
共 41 条
[1]   Using whole genome sequencing to study American foulbrood epidemiology in honeybees [J].
Agren, Joakim ;
Schaefer, Marc Oliver ;
Forsgren, Eva .
PLOS ONE, 2017, 12 (11)
[2]   Evidence for plasmid-mediated tetracycline resistance in Paenibacillus larvae, the causal agent of American Foulbrood (AFB) disease in honeybees [J].
Alippi, Adriana M. ;
Lopez, Ana C. ;
Reynaldi, Francisco J. ;
Grasso, Daniel H. ;
Aguilar, O. Mario .
VETERINARY MICROBIOLOGY, 2007, 125 (3-4) :290-303
[3]   A PCR-based method that permits specific detection of Paenibacillus larvae subsp larvae, the cause of American Foulbrood of honey bees, at the subspecies level [J].
Alippi, AM ;
López, AC ;
Aguilar, OM .
LETTERS IN APPLIED MICROBIOLOGY, 2004, 39 (01) :25-33
[4]   Rapid High Resolution Genotyping of Francisella tularensis by Whole Genome Sequence Comparison of Annotated Genes ("MLST+") [J].
Antwerpen, Markus H. ;
Prior, Karola ;
Mellmann, Alexander ;
Hoeppner, Sebastian ;
Splettstoesser, Wolf D. ;
Harmsen, Dag .
PLOS ONE, 2015, 10 (04)
[5]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[6]   Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American Foulbrood [J].
Beims, Hannes ;
Bunk, Boyke ;
Erler, Silvio ;
Mohr, Kathrin, I ;
Sproeer, Cathrin ;
Pradella, Silke ;
Guenther, Gabi ;
Rohde, Manfred ;
von der Ohe, Werner ;
Steinert, Michael .
INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2020, 310 (02)
[7]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[8]   Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid) [J].
Cresswell, James E. ;
Page, Christopher J. ;
Uygun, Mehmet B. ;
Holmbergh, Marie ;
Li, Yueru ;
Wheeler, Jonathan G. ;
Laycock, Ian ;
Pook, Christopher J. ;
de Ibarra, Natalie Hempel ;
Smirnoff, Nick ;
Tyler, Charles R. .
ZOOLOGY, 2012, 115 (06) :365-371
[9]   Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium [J].
de Been, Mark ;
Pinholt, Mette ;
Top, Janetta ;
Bletz, Stefan ;
Mellmann, Alexander ;
van Schaik, Willem ;
Brouwer, Ellen ;
Rogers, Malbert ;
Kraat, Yvette ;
Bonten, Marc ;
Corander, Jukka ;
Westh, Henrik ;
Harmsen, Dag ;
Willems, Rob J. L. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2015, 53 (12) :3788-3797
[10]   Multiple Locus Variable number of tandem repeat Analysis: A molecular genotyping tool for Paenibacillus larvae [J].
Descamps, Tine ;
De Smet, Lina ;
Stragier, Pieter ;
De Vos, Paul ;
de Graaf, Dirk C. .
MICROBIAL BIOTECHNOLOGY, 2016, 9 (06) :772-781