Linear delta-f simulations of nonlocal electron heat transport

被引:25
作者
Brunner, S [1 ]
Valeo, E [1 ]
Krommes, JA [1 ]
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
D O I
10.1063/1.874131
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nonlocal electron heat transport calculations are carried out by making use of some of the techniques developed previously for extending the delta f method to transport time scale simulations [S. Brunner, E. Valeo, and J. Krommes, Phys. Plasmas 6, 4504 (1999)]. By considering the relaxation of small amplitude temperature perturbations of an homogeneous Maxwellian background, only the linearized Fokker-Planck equation has to be solved, and direct comparisons can be made with the equivalent, nonlocal hydrodynamic approach [V. Yu. Bychenkov , Phys. Rev. Lett. 75, 4405 (1995)]. A quasineutrality-conserving algorithm is derived for computing the self-consistent electric fields driving the return currents. In the low-collisionality regime, results illustrate the importance of taking account of nonlocality in both space and time. (C) 2000 American Institute of Physics. [S1070-664X(00)01707-9].
引用
收藏
页码:2810 / 2823
页数:14
相关论文
共 25 条
[21]   NONLOCAL HEAT-TRANSPORT DUE TO STEEP TEMPERATURE-GRADIENTS [J].
LUCIANI, JF ;
MORA, P ;
VIRMONT, J .
PHYSICAL REVIEW LETTERS, 1983, 51 (18) :1664-1667
[22]   ELECTRON HEAT-TRANSPORT DOWN STEEP TEMPERATURE-GRADIENTS [J].
MATTE, JP ;
VIRMONT, J .
PHYSICAL REVIEW LETTERS, 1982, 49 (26) :1936-1939
[23]   A FULLY NONLINEAR CHARACTERISTIC METHOD FOR GYROKINETIC SIMULATION [J].
PARKER, SE ;
LEE, WW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (01) :77-86
[24]  
Shkarofsky I.P., 1966, The Particle Kinetics of Plasmas
[25]  
Stegun I. A., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V55