Generalized vertex-colorings of partial k-trees

被引:0
作者
Zhou, X [1 ]
Kanari, Y
Nishizeki, T
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[2] Matsushita Commun Sendai R&D Labs Co Ltd, Sendai, Miyagi 9813206, Japan
关键词
algorithm; generalized vertex-coloring; l-coloring; partial k-tree;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Let I be a positive integer, and let G be a graph with nonnegative integer weights on edges. Then a generalized vertex-coloring, called an l-coloring of G, is an assignment of colors to the vertices of G in such a way that any two vertices u and v get different colors if the distance between u and v in G is at most I. In this paper we give an algorithm to find an l-coloring of a given graph G with the minimum number of colors. The algorithm takes polynomial time if G is a partial k-tree and both I and k are bounded integers.
引用
收藏
页码:671 / 678
页数:8
相关论文
共 10 条
[1]   EASY PROBLEMS FOR TREE-DECOMPOSABLE GRAPHS [J].
ARNBORG, S ;
LAGERGREN, J ;
SEESE, D .
JOURNAL OF ALGORITHMS, 1991, 12 (02) :308-340
[2]   Parallel algorithms with optimal speedup for bounded treewidth [J].
Bodlaender, HL ;
Hagerup, T .
SIAM JOURNAL ON COMPUTING, 1998, 27 (06) :1725-1746
[3]   POLYNOMIAL ALGORITHMS FOR GRAPH ISOMORPHISM AND CHROMATIC INDEX ON PARTIAL K-TREES [J].
BODLAENDER, HL .
JOURNAL OF ALGORITHMS, 1990, 11 (04) :631-643
[4]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[5]   AUTOMATIC-GENERATION OF LINEAR-TIME ALGORITHMS FROM PREDICATE CALCULUS DESCRIPTIONS OF PROBLEMS ON RECURSIVELY CONSTRUCTED GRAPH FAMILIES [J].
BORIE, RB ;
PARKER, RG ;
TOVEY, CA .
ALGORITHMICA, 1992, 7 (5-6) :555-581
[6]  
GAREY MR, 1979, COMPUTES INTRACTABIL
[7]  
Isobe S., 1999, International Journal of Foundations of Computer Science, V10, P171, DOI 10.1142/S0129054199000137
[8]   Finding edge-disjoint paths in partial k-trees [J].
Zhou, X ;
Tamura, S ;
Nishizeki, T .
ALGORITHMICA, 2000, 26 (01) :3-30
[9]   Edge-coloring partial k-trees [J].
Zhou, X ;
Nakano, S ;
Nishizeki, T .
JOURNAL OF ALGORITHMS, 1996, 21 (03) :598-617
[10]  
ZHOU X, 1995, LECT NOTES COMPUTER, V1004, P332