Synthetic Enzyme-Catalyzed CO2 Fixation Reactions

被引:67
作者
Aleku, Godwin A. [1 ]
Roberts, George W. [2 ]
Titchiner, Gabriel R. [2 ]
Leys, David [2 ]
机构
[1] Univ Cambridge, Dept Biochem, 80 Tennis Court Rd, Cambridge CB2 1GA, England
[2] Univ Manchester, Dept Chem, Manchester Inst Biotechnol, 131 Princess St, Manchester M1 7DN, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
biocatalysis; carboxylation; cascade reactions; CO2; fixation; enzymes; ACID;
D O I
10.1002/cssc.202100159
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO2 fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO2 to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO2-fixation cascades.
引用
收藏
页码:1781 / 1804
页数:24
相关论文
共 141 条
[1]   Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture [J].
Abu Laban, Nidal ;
Selesi, Drazenka ;
Rattei, Thomas ;
Tischler, Patrick ;
Meckenstock, Rainer U. .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (10) :2783-2796
[2]   Enzymatic C-H activation of aromatic compounds through CO2 fixation [J].
Aleku, Godwin A. ;
Saaret, Annica ;
Bradshaw-Allen, Ruth T. ;
Derrington, Sasha R. ;
Titchiner, Gabriel R. ;
Gostimskaya, Irina ;
Gahloth, Deepankar ;
Parker, David A. ;
Hay, Sam ;
Leys, David .
NATURE CHEMICAL BIOLOGY, 2020, 16 (11) :1255-+
[3]   Biocatalytic reduction of α,β-unsaturated carboxylic acids to allylic alcohols [J].
Aleku, Godwin A. ;
Roberts, George W. ;
Leys, David .
GREEN CHEMISTRY, 2020, 22 (12) :3927-3939
[4]   Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases [J].
Aleku, Godwin A. ;
Prause, Christoph ;
Bradshaw-Allen, Ruth T. ;
Plasch, Katharina ;
Glueck, Silvia M. ;
Bailey, Samuel S. ;
Payne, Karl A. P. ;
Parker, David A. ;
Faber, Kurt ;
Leys, David .
CHEMCATCHEM, 2018, 10 (17) :3736-3745
[5]   Biocatalytic Potential of Enzymes Involved in the Biosynthesis of Isoprenoid Quinones [J].
Aleku, Godwin A. ;
Nowicka, Beatrycze ;
Turner, Nicholas J. .
CHEMCATCHEM, 2018, 10 (01) :124-135
[6]  
Aleku GA, 2017, NAT CHEM, V9, P961, DOI [10.1038/NCHEM.2782, 10.1038/nchem.2782]
[7]   Biocatalysis for the application of CO2 as a chemical feedstock [J].
Alissandratos, Apostolos ;
Easton, Christopher J. .
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2015, 11 :2370-2387
[8]   Structure and function of Rubisco [J].
Andersson, Inger ;
Backlund, Anders .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :275-291
[9]   Substrate specificity in thiamin diphosphate-dependent decarboxylases [J].
Andrews, Forest H. ;
McLeish, Michael J. .
BIOORGANIC CHEMISTRY, 2012, 43 :26-36
[10]   Enzymatic synthesis of 4-OH-benzoic acid from phenol and CO2:: The first example of a biotechnological application of a carboxylase enzyme. [J].
Aresta, M ;
Quaranta, E ;
Liberio, R ;
Dileo, C ;
Tommasi, I .
TETRAHEDRON, 1998, 54 (30) :8841-8846