Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation

被引:86
|
作者
Farah, Luiz G. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
关键词
SCATTERING; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00028-015-0298-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the supercritical inhomogeneous nonlinear Schrodinger equation i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b) vertical bar u vertical bar(2 sigma) u = 0, where and (2-b)/N < sigma < (2-b)/(N-2) and 0 < b < min{2, N}. We prove a Gagliardo-Nirenberg-type estimate and use it to establish sufficient conditions for global existence and blow-up in H-1 (R-N).
引用
收藏
页码:193 / 208
页数:16
相关论文
共 50 条
  • [31] ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION
    Du, Dapeng
    Wu, Yifei
    Zhang, Kaijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3639 - 3650
  • [32] Global well-posedness and scattering for the derivative nonlinear Schrodinger equation with small rough data
    Wang Baoxiang
    Han Lijia
    Huang Chunyan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2253 - 2281
  • [33] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 1 - 19
  • [34] GLOBAL EXISTENCE AND BLOW-UP FOR THE FOCUSING INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION WITH INVERSE-SQUARE POTENTIAL
    An, Jinmyong
    Jang, Roesong
    Kim, Jinmyong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1046 - 1067
  • [35] Blow-up phenomena and local well-posedness for a generalized Camassa-Holm equation in the critical Besov space
    Tu, Xi
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (04): : 801 - 829
  • [36] Blow-up dynamics of L2-critical inhomogeneous fractional nonlinear Schrodinger equation
    Peng, Congming
    Zhang, Ying
    Ma, Caochuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6896 - 6905
  • [37] Energy critical Schrodinger equation with weighted exponential nonlinearity: Local and global well-posedness
    Bensouilah, Abdelwahab
    Draoui, Dhouha
    Majdoub, Mohamed
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (04) : 599 - 621
  • [38] GLOBAL WELL-POSEDNESS AND SCATTERING FOR THE FOCUSING NONLINEAR SCHRODINGER EQUATION IN THE NONRADIAL CASE
    Han, Pigong
    OPUSCULA MATHEMATICA, 2012, 32 (03) : 487 - 504
  • [39] THE SUPERCRITICAL GENERALIZED KDV EQUATION: GLOBAL WELL-POSEDNESS IN THE ENERGY SPACE AND BELOW
    Farah, Luiz G.
    Linares, Felipe
    Pastor, Ademir
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (02) : 357 - 377
  • [40] Well-posedness for energy-critical nonlinear Schrodinger equation on waveguide manifold
    Cheng, Xing
    Zhao, Zehua
    Zheng, Jiqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)