Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation

被引:87
|
作者
Farah, Luiz G. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
关键词
SCATTERING; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00028-015-0298-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the supercritical inhomogeneous nonlinear Schrodinger equation i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b) vertical bar u vertical bar(2 sigma) u = 0, where and (2-b)/N < sigma < (2-b)/(N-2) and 0 < b < min{2, N}. We prove a Gagliardo-Nirenberg-type estimate and use it to establish sufficient conditions for global existence and blow-up in H-1 (R-N).
引用
收藏
页码:193 / 208
页数:16
相关论文
共 50 条