Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation

被引:86
|
作者
Farah, Luiz G. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
关键词
SCATTERING; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00028-015-0298-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the supercritical inhomogeneous nonlinear Schrodinger equation i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b) vertical bar u vertical bar(2 sigma) u = 0, where and (2-b)/N < sigma < (2-b)/(N-2) and 0 < b < min{2, N}. We prove a Gagliardo-Nirenberg-type estimate and use it to establish sufficient conditions for global existence and blow-up in H-1 (R-N).
引用
收藏
页码:193 / 208
页数:16
相关论文
共 50 条
  • [1] Local well-posedness and blow-up for an inhomogeneous nonlinear heat equation
    Alessa, Rasha
    Alshehri, Aisha
    Altamimi, Haya
    Majdoub, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5264 - 5272
  • [2] GLOBAL WELL-POSEDNESS AND BLOW-UP FOR THE HARTREE EQUATION
    Yang, Lingyan
    Li, Xiaoguang
    Wu, Yonghong
    Caccetta, Louis
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (04) : 941 - 948
  • [3] Global Well-Posedness and Instability of an Inhomogeneous Nonlinear Schrodinger Equation
    Saanouni, T.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 387 - 417
  • [4] SHARP CONDITION OF GLOBAL WELL-POSEDNESS FOR INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Yang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4631 - 4642
  • [5] On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation
    Cardoso, Mykael
    Farah, Luiz Gustavo
    Guzman, Carlos M.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (02) : 1337 - 1367
  • [6] LOCAL WELL-POSEDNESS FOR THE INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATION
    Aloui, Lassaad
    Tayachi, Slim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5409 - 5437
  • [7] Global well-posedness of a damped Schrodinger equation in two space dimensions
    Saanouni, Tarek
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (04) : 488 - 495
  • [8] Well-posedness and blow-up properties for the generalized Hartree equation
    Arora, Anudeep Kumar
    Roudenko, Svetlana
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2020, 17 (04) : 727 - 763
  • [9] Small Data Global Well-Posedness and Scattering for the Inhomogeneous Nonlinear Schrodinger Equation in Hs(Rn)
    An, JinMyong
    Kim, JinMyong
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2021, 40 (04): : 453 - 475
  • [10] Global well-posedness, regularity and blow-up for the β-CCF model
    Ferreir, Lucas C. F.
    Moitinho, Valter V. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 230 - 259