Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation

被引:88
作者
Farah, Luiz G. [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Av Antonio Carlos,6627,Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil
关键词
SCATTERING; UNIQUENESS; EXISTENCE;
D O I
10.1007/s00028-015-0298-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the supercritical inhomogeneous nonlinear Schrodinger equation i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b) vertical bar u vertical bar(2 sigma) u = 0, where and (2-b)/N < sigma < (2-b)/(N-2) and 0 < b < min{2, N}. We prove a Gagliardo-Nirenberg-type estimate and use it to establish sufficient conditions for global existence and blow-up in H-1 (R-N).
引用
收藏
页码:193 / 208
页数:16
相关论文
共 16 条
[1]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[2]  
Chen JQ, 2007, DISCRETE CONT DYN-B, V8, P357
[3]   On a class of nonlinear inhomogeneous Schrödinger equation [J].
Chen J. .
Journal of Applied Mathematics and Computing, 2010, 32 (01) :237-253
[4]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[5]   Scattering for the focusing energy-subcritical nonlinear Schrodinger equation [J].
Fang DaoYuan ;
Xie Jian ;
Cazenave Thierry .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) :2037-2062
[6]  
Genoud F, 2008, DISCRETE CONT DYN-A, V21, P137
[7]   An Inhomogeneous, L2-Critical, Nonlinear Schrodinger Equation [J].
Genoud, Francois .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (03) :283-290
[8]  
HOLMER J, 2007, AMRX APPL MATH RES E, V1
[9]   A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) :435-467
[10]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675