Evolution of similarity lengths in anisotropic magnetohydrodynamic turbulence

被引:14
作者
Bandyopadhyay, Riddhi [1 ,2 ]
Matthaeus, William H. [1 ,2 ]
Oughton, Sean [3 ]
Wan, Minping [4 ]
机构
[1] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA
[2] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA
[3] Univ Waikato, Dept Math & Stat, Hamilton 3240, New Zealand
[4] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Guangdong, Peoples R China
关键词
homogeneous turbulence; MHD turbulence; turbulence theory; HYDROMAGNETIC TURBULENCE; MAGNETIC-FIELD; ENERGY; DECAY; PHENOMENOLOGY; CONSEQUENCES; CASCADES; PARALLEL;
D O I
10.1017/jfm.2019.513
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In an earlier paper (Wan et al., J. Fluid Mech., vol. 697, 2012, pp. 296-315), the authors showed that a similarity solution for anisotropic incompressible three-dimensional magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field, exists if the ratio of parallel to perpendicular (with respect to) similarity length scales remains constant in time. This conjecture appears to be a rather stringent constraint on the dynamics of decay of the energy-containing eddies in MHD turbulence. However, we show here, using direct numerical simulations, that this hypothesis is indeed satisfied in incompressible MHD turbulence. After an initial transient period, the ratio of parallel to perpendicular length scales fluctuates around a steady value during the decay of the eddies. We show further that a Taylor-Karman-like similarity decay holds for MHD turbulence in the presence of a mean magnetic field. The effect of different parameters, including Reynolds number, mean field strength, and cross-helicity, on the nature of similarity decay is discussed.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 46 条
[1]   Finite Dissipation in Anisotropic Magnetohydrodynamic Turbulence [J].
Bandyopadhyay, Riddhi ;
Oughton, S. ;
Wan, M. ;
Matthaeus, W. H. ;
Chhiber, R. ;
Parashar, T. N. .
PHYSICAL REVIEW X, 2018, 8 (04)
[2]   Incompressive Energy Transfer in the Earth's Magnetosheath: Magnetospheric Multiscale Observations [J].
Bandyopadhyay, Riddhi ;
Chasapis, A. ;
Chhiber, R. ;
Parashar, T. N. ;
Matthaeus, W. H. ;
Shay, M. A. ;
Maruca, B. A. ;
Burch, J. L. ;
Moore, T. E. ;
Pollock, C. J. ;
Giles, B. L. ;
Paterson, W. R. ;
Dorelli, J. ;
Gershman, D. J. ;
Torbert, R. B. ;
Russell, C. T. ;
Strangeway, R. J. .
ASTROPHYSICAL JOURNAL, 2018, 866 (02)
[3]  
Batchelor G.K., 1953, The Theory of Homogeneous Turbulence
[4]   Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence [J].
Bigot, Barbara ;
Galtier, sebastien ;
Politano, Helene .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[5]   Development of anisotropy in incompressible magnetohydrodynamic turbulence [J].
Bigot, Barbara ;
Galtier, Sebastien ;
Politano, Helene .
PHYSICAL REVIEW E, 2008, 78 (06)
[6]   On two-dimensional magnetohydrodynamic turbulence [J].
Biskamp, D ;
Schwarz, E .
PHYSICS OF PLASMAS, 2001, 8 (07) :3282-3292
[7]   Turbulence transport throughout the heliosphere [J].
Breech, B. ;
Matthaeus, W. H. ;
Minnie, J. ;
Bieber, J. W. ;
Oughton, S. ;
Smith, C. W. ;
Isenberg, P. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A8)
[8]   On the statistical theory of isotropic turbulence [J].
de Karan, T ;
Howarth, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1938, 164 (A917) :0192-0215
[9]   FULLY-DEVELOPED ANISOTROPIC HYDROMAGNETIC TURBULENCE IN INTER-PLANETARY SPACE [J].
DOBROWOLNY, M ;
MANGENEY, A ;
VELTRI, P .
PHYSICAL REVIEW LETTERS, 1980, 45 (02) :144-147
[10]   Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations [J].
Donzis, D. A. ;
Yeung, P. K. ;
Sreenivasan, K. R. .
PHYSICS OF FLUIDS, 2008, 20 (04)