Error analysis of the Trefftz method for solving Laplace's eigenvalue problems

被引:9
作者
Li, Zi-Cai [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung 80424, Taiwan
关键词
Trefftz method; boundary approximation method; eigenvalue problem; Helmholtz equation; interfaces;
D O I
10.1016/j.cam.2005.12.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving Laplace's eigenvalue problems we propose new algorithms using the Trefftz method (TM) (i.e., the boundary approximation method (BAM)), by means of degeneracy of numerical Helmholtz equations. Since piecewise particular solutions can be fully adopted, the new algorithms benefit high accuracy of eigenvalues and eigenfunctions, low cost in CPU time and computer storage. Also the algorithms can be applied to solve the problems with multiple interfaces and singularities. In this paper, error estimates are derived for the approximate eigenvalues and eigenfunctions obtained. Numerical experiments for smooth and singular solutions are reported in this paper to show significance of the algorithms proposed and to verify the theoretical results made. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:231 / 254
页数:24
相关论文
共 25 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1967, SIAM J NUMER ANAL, DOI [DOI 10.1137/0704008, 10.1137/0704008]
[3]  
Atkinson K., 1991, An Introduction to Numerical Analysis
[4]  
Babuska I., 1991, Finite Element Methods, V2, P641
[5]  
BERGMAN S, 1969, INTEGRAL OPERATORS T
[6]  
Birkhoff G., 1984, Numerical Solution of Elliptic Problems, DOI DOI 10.1137/1.9781611970869
[7]  
Courant R., 1953, Methods of Mathematical Physics, VI
[8]   RATE OF CONVERGENCE OF BERGMAN-VEKUA METHOD FOR NUMERICAL-SOLUTION OF ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
EISENSTAT, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (03) :654-680
[9]  
Golub GH, 2013, Matrix Computations, V4
[10]  
HALL C.A., 1990, NUMERICAL ANAL PARTI