On travelling wave solutions of the Burgers-Korteweg-de Vries equation

被引:35
作者
Feng, Zhaosheng [1 ]
机构
[1] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
关键词
D O I
10.1088/0951-7715/20/2/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we survey some recent advances in the study of travelling wave solutions to the Burgers-Korteweg-de Vries equation. Some comments are given on the existing results. A class of travelling solitary wave solutions in terms of elliptic functions with arbitrary velocity is obtained by means of the first-integral method as well as the method of compatible vector fields.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 62 条
[1]  
ABLOWITZ MJ, 1979, B MATH BIOL, V41, P835, DOI 10.1007/BF02462380
[2]  
[Anonymous], MATH PRACTICE THEORY
[3]  
[Anonymous], 1964, Handbook of mathematical functions
[4]   ON CNOIDAL WAVES AND BORES [J].
BENJAMIN, TB ;
LIGHTHILL, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 224 (1159) :448-460
[5]   LONG WAVES ON LIQUID FILMS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (02) :150-&
[6]   TRAVELING-WAVE SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGERS EQUATION [J].
BONA, JL ;
SCHONBEK, ME .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 :207-226
[7]  
Bourbaki N., 1972, COMMUTATIVE ALGEBRA
[8]  
Burgers J M., 1939, T ROY NETH ACAD SCI, V17, P1
[9]   KORTEWEG-DE VRIES-BURGERS EQUATION [J].
CANOSA, J ;
GAZDAG, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (04) :393-403
[10]  
Dauletiyarov K.Z., 1984, ZH VYCHISL MAT MAT F, V24, P383