Physiological and biochemical responses of tomato microshoots to induced salinity stress with associated ethylene accumulation

被引:61
|
作者
Shibli, Rida A. [1 ]
Kushad, Mosbah [1 ]
Yousef, Gad G. [1 ]
Lila, Mary Ann [1 ]
机构
[1] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA
关键词
ethylene; In vitro; microshoot; salinity; tomato;
D O I
10.1007/s10725-006-9158-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Physiological and biochemical responses of open-pollinated 'Roma' and dwarf F1 hybrid 'Patio' tomato (Lycopersicon esculentum Mill.) cultivars to in vitro induced salinity were examined in light of the possible contribution of ethylene to these symptoms. Salinity was induced by incorporating 0 (control), 50, 100, 150, or 200 mM NaCl into shoot culture media. Elevated salinity treatments significantly enhanced ethylene accumulation in the headspace and were accompanied by increased leaf epinasty in both cultivars. Growth, leaf cell sap osmolarity, leaf tissue viability and shoot soluble protein content were generally depressed with elevated salinity treatments, whereas electrolyte leakage, membrane injury, raffinose, and total sugars were concomitantly increased. Macronutrients N, P, K, Ca, Mg, and S decreased with elevated salinity in both cultivars and were accompanied by a significant increase in Na content and a sharp decrease in K/Na ratio. Tissue micronutrients, Fe, B, Zn, Mn, and Cu were generally decreased with elevated salinity especially at 100 mM or more. Incorporating ethylene inhibitors CoCl2 or NiCl2 at 5.0 or 10.0 mg/l into media supplemented with 100 mM NaCl significantly reduced ethylene accumulation in the headspace and prevented epinasty, but did not eliminate the negative impacts on growth and other physiological parameters caused by salinity treatment in either cultivar. Our results indicate that the increase in ethylene under salinity stress is not the primary factor contributing to salinity's deleterious effect on tomato plant growth and physiology.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 50 条
  • [11] Physiological and biochemical responses of okra (Abelmoschus esculentus) under salinity stress in Iran
    Najafi, Raheleh
    Rezaei, Ayatollah
    Mozafarian, Maryam
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2024, 18
  • [12] PHYSIOLOGICAL AND BIOCHEMICAL RESPONSES TO NACl SALINITY STRESS IN THREE ROEGNERIA (POACEAE) SPECIES
    Xie, Jihong
    Dai, Yating
    Mu, Huaibin
    De, Ying
    Chen, Hao
    Wu, Zinian
    Yu, Linqing
    Ren, Weibo
    PAKISTAN JOURNAL OF BOTANY, 2016, 48 (06) : 2215 - 2222
  • [13] Physiological and biochemical responses induced by lead stress in Spirodela polyrhiza
    Xuqiang Qiao
    Guoxin Shi
    Rong Jia
    Lin Chen
    Xiuli Tian
    Jun Xu
    Plant Growth Regulation, 2012, 67 : 217 - 225
  • [14] Physiological and biochemical responses induced by lead stress in Spirodela polyrhiza
    Qiao, Xuqiang
    Shi, Guoxin
    Jia, Rong
    Chen, Lin
    Tian, Xiuli
    Xu, Jun
    PLANT GROWTH REGULATION, 2012, 67 (03) : 217 - 225
  • [15] Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants
    Asunta Mukami
    Alex Ng’etich
    Easter Syombua
    Richard Oduor
    Wilton Mbinda
    Physiology and Molecular Biology of Plants, 2020, 26 : 1569 - 1582
  • [16] Methyl jasmonate improves physiological and biochemical responses of Anchusa italica under salinity stress
    Taheri, Z.
    Vatankhah, E.
    Jafarian, V
    SOUTH AFRICAN JOURNAL OF BOTANY, 2020, 130 : 375 - 382
  • [17] Insights into physiological and biochemical responses of Zea mays L. under salinity stress
    Aizaz, Muhammad
    Ullah, Raza
    Ullah, Tariq
    Sami, Rokayya
    Aljabri, Maha
    Althaqafi, Mohammed M.
    AL-Farga, Ammar
    Qari, Sameer H.
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2024, 36 : 1 - 13
  • [18] Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights
    Alsamadany, Hameed
    Abdulbaki, Abdulbaki Shehu
    Alzahrani, Yahya
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [19] Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants
    Mukami, Asunta
    Ng'etich, Alex
    Syombua, Easter
    Oduor, Richard
    Mbinda, Wilton
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2020, 26 (08) : 1569 - 1582
  • [20] Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance
    Zeeshan, Muhammad
    Lu, Meiqin
    Sehar, Shafaque
    Holford, Paul
    Wu, Feibo
    AGRONOMY-BASEL, 2020, 10 (01):