Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy

被引:102
作者
Liu, Shuai [1 ,2 ]
Yang, WenSheng [1 ,2 ]
Shi, Xiao [1 ,2 ]
Li, Bin [1 ,2 ]
Duan, Shengchao [1 ,2 ]
Guo, Hanjie [1 ,2 ]
Guo, Jing [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Xueyuan Rd, Beijing 10008, Peoples R China
[2] Beijing Key Lab Special Melting & Preparat High E, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
AZ61; Laser processing; Microstructure; Mechanical property; RAPID SOLIDIFICATION; STAINLESS-STEEL; CORROSION BEHAVIOR; HEAT-TREATMENT; MELTING MICROSTRUCTURE; TENSILE DEFORMATION; FRACTURE-BEHAVIOR; GRAIN-REFINEMENT; WEAR PERFORMANCE; MG;
D O I
10.1016/j.jallcom.2019.06.261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a detailed, systematic study of how laser process parameters affect the formation characteristics, densification, microstructure, and mechanical properties of AZ61 magnesium alloy specimens prepared by selective laser melting (SLM). The results allow us to develop a method to control defects and optimize the SLM parameters for the fabrication of a dense, bulk AZ61 magnesium alloy. A bulk AZ61 magnesium alloy prepared by SLM is used to investigate how hatch spacing, large-scale scanning speed, and energy input affect the macrosurface morphology (before and after polishing) and how the surface roughness and the relative density of the specimens affect the microstructure and mechanical properties of the dense bulk material. The results show that process parameters strongly influence the macrosurface topography, which we divide into four stages: a strong surface balling pore region, weak surface balling pore region, rough scan track region, and flat smooth region. In addition, the surface roughness changes from 18.95 to 7.49 mu m. Two types of pore shapes (meniscus and circular) are governed by the scan speed, and pore size is a function of hatch spacing. We also obtain unusual X-ray diffraction results that depend on input energy in the range of 138.89-208.33 J/mm(3). The alpha-Mg diffraction peak shifts to the right and reaches a maximum at 156.25 J/mm(3) (scanning speed of 400 mm/s and hatch spacing of 0.06 mm), and the relative density reaches a maximum of 99.4% because the amount of Al in solid solution is maximized. The microstructure results show that the microstructure evolution involves dispersed alpha-Mg grains (refined equiaxed alpha-Mg grains) and coarsened equiaxed alpha-Mg grains with an average grain size ranging from 1.61 to 2.46 mm. The tensile properties of the as-built AZ61 Mg alloy at room temperature are superior to those of an as-cast AZ61 Mg alloy. The ultimate tensile strength of the as-built AZ61 is 93% greater than that of the as-cast AZ61 alloy, and the yield strength is increased by 136%. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 96 条
[1]  
Aboulkhair N. T., 2014, Addit. Manuf, V14, P77, DOI [DOI 10.1016/J.ADDMA.2014.08.001, 10.1016/j.addma.2014.08.001]
[2]   On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study [J].
Alrbaey, K. ;
Wimpenny, D. ;
Tosi, R. ;
Manning, W. ;
Moroz, A. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (06) :2139-2148
[3]   SOLUTE TRAPPING - COMPARISON OF THEORY WITH EXPERIMENT [J].
AZIZ, MJ ;
TSAO, JY ;
THOMPSON, MO ;
PEERCY, PS ;
WHITE, CW .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2489-2492
[4]   On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting [J].
Bertoli, Umberto Scipioni ;
Wolfer, Alexander J. ;
Matthews, Manyalibo J. ;
Delplanque, Jean-Pierre R. ;
Schoenung, Julie M. .
MATERIALS & DESIGN, 2017, 113 :331-340
[5]   Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties [J].
Bobbert, F. S. L. ;
Lietaert, K. ;
Eftekhari, A. A. ;
Pouran, B. ;
Ahmadi, S. M. ;
Weinans, H. ;
Zadpoor, A. A. .
ACTA BIOMATERIALIA, 2017, 53 :572-584
[6]   In-situ preparation and formation of TiB/Ti-6Al-4V nanocomposite via laser additive manufacturing: Microstructure evolution and tribological behavior [J].
Cai, Chao ;
Radoslaw, Chrupcala ;
Zhang, Jinliang ;
Yan, Qian ;
Wen, Shifeng ;
Song, Bo ;
Shi, Yusheng .
POWDER TECHNOLOGY, 2019, 342 :73-84
[7]   Influence of rapid solidification on the microstructure of AZ91HP alloy [J].
Cai, J. ;
Ma, G. C. ;
Liu, Z. ;
Zhang, H. F. ;
Hu, Z. Q. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 422 (1-2) :92-96
[8]   Tensile and fatigue behaviour of wrought magnesium alloys AZ31 and AZ61 [J].
Chamos, A. N. ;
Pantelakis, Sp. G. ;
Haidemenopoulos, G. N. ;
Kamoutsi, E. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31 (09) :812-821
[9]   Mechanical properties and microstructures of various Mg-Li alloys [J].
Chang, Tien-Chan ;
Wang, Jian-Yih ;
Chu, Chun-Len ;
Lee, Shyong .
MATERIALS LETTERS, 2006, 60 (27) :3272-3276
[10]   Grain refinement and strength enhancing of hot extruded Mg alloy by application of electric pulse [J].
Chen, Liang ;
Li, Shuoshuo ;
Chu, Xingrong ;
Zhao, Guoqun ;
Gao, Jun .
MATERIALS LETTERS, 2019, 241 :104-107