Atmospheric Sulfur in Archean Komatiite-Hosted Nickel Deposits

被引:165
作者
Bekker, Andrey [1 ,2 ]
Barley, Mark E. [3 ]
Fiorentini, Marco L. [3 ]
Rouxel, Olivier J. [4 ]
Rumble, Douglas [1 ]
Beresford, Stephen W. [3 ]
机构
[1] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA
[2] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada
[3] Univ Western Australia, Ctr Explorat Targeting, Sch Earth & Environm, Crawley, WA 6009, Australia
[4] Woods Hole Oceanog Inst, Marine Chem & Geochem Dept, Woods Hole, MA 02543 USA
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
MICROBIAL SULFATE REDUCTION; IRON ISOTOPE FRACTIONATION; WESTERN-AUSTRALIA; SOUTH-AFRICA; FE-ISOTOPE; SULFIDE; ORIGIN; TECTONICS; GENESIS; OXYGEN;
D O I
10.1126/science.1177742
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some of Earth's largest iron-nickel (Fe-Ni) sulfide ore deposits formed during the Archean and early Proterozoic. Establishing the origin of the metals and sulfur in these deposits is critical for understanding their genesis. Here, we present multiple sulfur isotope data implying that the sulfur in Archean komatiite-hosted Fe-Ni sulfide deposits was previously processed through the atmosphere and then accumulated on the ocean floor. High-temperature, mantle-derived komatiite magmas were then able to incorporate the sulfur from seafloor hydrothermal sulfide accumulations and sulfidic shales to form Neoarchean komatiite-hosted Fe-Ni sulfide deposits at a time when the oceans were sulfur-poor.
引用
收藏
页码:1086 / 1089
页数:4
相关论文
共 31 条
[1]  
[Anonymous], 1989, ORE DEPOSITION ASS M
[2]  
Arndt N, 2008, KOMATIITE, P1, DOI 10.1017/CBO9780511535550
[3]   The five stable isotope compositions of Fig Tree barites: Implications on sulfur cycle in ca. 3.2 Ga oceans [J].
Bao, Huiming ;
Rumble, Douglas, III ;
Lowe, Donald R. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (20) :4868-4879
[4]   The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity [J].
Barley, ME ;
Krapez, B ;
Groves, DI ;
Kerrich, R .
PRECAMBRIAN RESEARCH, 1998, 91 (1-2) :65-90
[5]   Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen [J].
Barley, ME ;
Bekker, A ;
Krapez, B .
EARTH AND PLANETARY SCIENCE LETTERS, 2005, 238 (1-2) :156-171
[6]   Application of Fe isotopes to tracing the geochemical and biological cycling of Fe [J].
Beard, BL ;
Johnson, CM ;
Skulan, JL ;
Nealson, KH ;
Cox, L ;
Sun, H .
CHEMICAL GEOLOGY, 2003, 195 (1-4) :87-117
[7]   The early history of atmospheric oxygen: Homage to Robert A. Garrels [J].
Canfield, DE .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2005, 33 :1-36
[8]   Episodic continental growth and supercontinents: a mantle avalanche connection? [J].
Condie, KC .
EARTH AND PLANETARY SCIENCE LETTERS, 1998, 163 (1-4) :97-108
[9]   The terrestrial record of stable sulphur isotopes: a review of the implications for evolution of Earth's sulphur cycle [J].
Farquhar, J ;
Wing, BA .
MINERAL DEPOSITS AND EARTH EVOLUTION, 2005, 248 :167-177
[10]   Atmospheric influence of Earth's earliest sulfur cycle [J].
Farquhar, J ;
Bao, HM ;
Thiemens, M .
SCIENCE, 2000, 289 (5480) :756-758