Collaboration of 3D context and extracellular matrix in the development of glioma sternness in a 3D model

被引:40
作者
Ma, Nina K. L. [1 ]
Lim, Jia Kai [1 ]
Leong, Meng Fatt [1 ,2 ]
Sandanaraj, Edwin [3 ,4 ,5 ]
Ang, Beng Ti [4 ,6 ,7 ,8 ]
Tang, Carol [3 ,8 ,9 ]
Wan, Andrew C. A. [1 ]
机构
[1] Inst Bioengn & Nanotechnol, 31 Biopolis Way, Singapore 138669, Singapore
[2] Temasek Polytech, Sch Appl Sci, Singapore 529757, Singapore
[3] Natl Neurosci Inst, Dept Res, Singapore 308433, Singapore
[4] ASTAR, Singapore Inst Clin Sci, Singapore 117609, Singapore
[5] Nanyang Technol Univ, Sch Biol Sci, Singapore 637551, Singapore
[6] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Physiol, Singapore 117597, Singapore
[7] Natl Neurosci Inst, Dept Neurosurg, Singapore 308433, Singapore
[8] Duke Natl Univ Singapore Grad Med Sch, Singapore 169857, Singapore
[9] Natl Canc Ctr, Humphrey Oei Inst Canc Res, Div Med Sci, Singapore 169610, Singapore
基金
英国医学研究理事会;
关键词
Glioma sternness; 3D context; Extracellular matrix; Integrins; Laminin isoforms; CANCER STEM-CELLS; GENE-EXPRESSION; NEURAL STEM; CXCR4; EXPRESSION; INTEGRIN; PROLIFERATION; ARCHITECTURE; ENRICHMENT; SIGNATURES; MIGRATION;
D O I
10.1016/j.biomaterials.2015.11.031
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A hierarchy of cellular sternness exists in certain cancers, and any successful strategy to treat such cancers would have to eliminate the self-renewing tumor-initiating cells at the apex of the hierarchy. The cellular microenvironment, in particular the extracellular matrix (ECM), is believed to have a role in regulating sternness. In this work, U251 glioblastoma cells are cultured on electrospun polystyrene (ESPS) scaffolds coated with an array of 7 laminin isoforms to provide a 3D model for stern cell-related genes and proteins expression studies. We observed collaboration between 3D context and laminins in promoting glioma sternness. Depending on the laminin isoform presented, U251 cells cultured on ESPS scaffolds (3D) exhibited increased expression of sternness markers compared to those cultured on tissue culture polystyrene (2D). Our results indicate the influence of 3D (versus 2D) context on integrin expression, specifically, the upregulation of the laminin-binding integrins alpha 6 and beta 4. By a colony forming assay, we showed enhanced clonogenicity of cells grown on ESPS scaffolds in collaboration with laminins 411, 421, 511 and 521. Evaluation of patient glioma databases demonstrated significant enrichment of integrin and ECM pathway networks in tumors of worse prognosis, consistent with our observations. The present results demonstrate how 3D versus 2D context profoundly affects ECM signaling, leading to sternness. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 73
页数:12
相关论文
共 50 条
[31]   The mechanobiology of tendon fibroblasts under static and uniaxial cyclic load in a 3D tissue engineered model mimicking native extracellular matrix [J].
Sawadkar, Prasad ;
Player, Darren ;
Bozec, Laurent ;
Mudera, Vivek .
JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (01) :135-146
[32]   Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma [J].
Xiao, Weikun ;
Wang, Shanshan ;
Zhang, Rongyu ;
Sohrabi, Alireza ;
Yu, Qi ;
Liu, Sihan ;
Ehsanipour, Arshia ;
Liang, Jesse ;
Bierman, Rebecca D. ;
Nathanson, David A. ;
Seidlits, Stephanie K. .
MATRIX BIOLOGY, 2020, 85-86 :128-146
[33]   3D or not 3D: a guide to assess cell viability in 3D cell systems [J].
Bikmulina, Polina ;
Kosheleva, Nastasia ;
Efremov, Yuri ;
Antoshin, Artem ;
Heydari, Zahra ;
Kapustina, Valentina ;
Royuk, Valery ;
Mikhaylov, Vasily ;
Fomin, Victor ;
Vosough, Massoud ;
Timashev, Peter ;
Rochev, Yury ;
Shpichka, Anastasia .
SOFT MATTER, 2022, 18 (11) :2222-2233
[34]   Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue [J].
De Santis, Martina M. ;
Alsafadi, Hani N. ;
Tas, Sinem ;
Bolukbas, Deniz A. ;
Prithiviraj, Sujeethkumar ;
Da Silva, Iran A. N. ;
Mittendorfer, Margareta ;
Ota, Chiharu ;
Stegmayr, John ;
Daoud, Fatima ;
Koenigshoff, Melanie ;
Sward, Karl ;
Wood, Jeffery A. ;
Tassieri, Manlio ;
Bourgine, Paul E. ;
Lindstedt, Sandra ;
Mohlin, Sofie ;
Wagner, Darcy E. .
ADVANCED MATERIALS, 2021, 33 (03)
[35]   Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture [J].
Link, Patrick A. ;
Pouliot, Robert A. ;
Mikhaiel, Nabil S. ;
Young, Bethany M. ;
Heise, Rebecca L. .
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (119)
[36]   Extracellular matrix stiffness cues junctional remodeling for 3D tissue elongation [J].
Chen, Dong-Yuan ;
Crest, Justin ;
Streichan, Sebastian J. ;
Bilder, David .
NATURE COMMUNICATIONS, 2019, 10 (1)
[37]   Extracellular Matrix Microfiber Papers for Constructing Multilayered 3D Composite Tissues [J].
Nakatsuji, Hirotaka ;
Matsusaki, Michiya .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (11) :5610-5614
[38]   Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer [J].
Bhattacharya, Anamitra ;
Alam, Kamare ;
Roy, Nakka Sharmila ;
Kaur, Kulwinder ;
Kaity, Santanu ;
Ravichandiran, Velayutham ;
Roy, Subhadeep .
JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2023, 42 (01)
[39]   Design approaches for 3D cell culture and 3D bioprinting platforms [J].
Sreepadmanabh, M. ;
Arun, Ashitha B. ;
Bhattacharjee, Tapomoy .
BIOPHYSICS REVIEWS, 2024, 5 (02)
[40]   Development and evolution of Drosophila chromatin landscape in a 3D genome context [J].
Ali, Mujahid ;
Younas, Lubna ;
Liu, Jing ;
He, Huangyi ;
Zhang, Xinpei ;
Zhou, Qi .
NATURE COMMUNICATIONS, 2024, 15 (01)