Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses

被引:96
作者
Lee, Dong-Hun [1 ]
Criado, Miria Ferreira [2 ]
Swayne, David E. [2 ]
机构
[1] Univ Connecticut, Dept Pathobiol & Vet Sci, Storrs, CT 06269 USA
[2] ARS, Exot & Emerging Avian Viral Dis Res Unit, Southeast Poultry Res Lab, US Natl Poultry Res Ctr,USDA, Athens, GA 30605 USA
来源
COLD SPRING HARBOR PERSPECTIVES IN MEDICINE | 2021年 / 11卷 / 02期
关键词
HEMAGGLUTININ CLEAVAGE SITE; PROTEOLYTIC CLEAVAGE; CONNECTING PEPTIDE; REVERSE GENETICS; AMINO-ACIDS; A VIRUSES; H5N2; OUTBREAK; VIRULENCE; POULTRY;
D O I
10.1101/cshperspect.a038679
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
High-pathogenicity avian influenza (HPAI) viruses have arisen from low-pathogenicity avian influenza (LPAI) viruses via changes in the hemagglutinin proteolytic cleavage site, which include mutation of multiple nonbasic to basic amino acids, duplication of basic amino acids, or recombination with insertion of cellular or viral amino acids. Between 1959 and 2019, a total of 42 natural, independent H5 (n = 15) and H7 (n = 27) LPAI to HPAI virus conversion events have occurred in Europe (n = 16), North America (n = 9), Oceania (n = 7), Asia (n = 5), Africa (n = 4), and South America (n =1). Thirty-eight of these HPAI outbreaks were limited in the number of poultry premises affected and were eradicated. However, poultry outbreaks caused by A/goose/Guangdong/1/1996 (H5Nx), Mexican H7N3, and Chinese H7N9 HPAI lineages have continued. Active surveillance and molecular detection and characterization efforts will provide the best opportunity for early detection and eradication from domestic birds.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 125 条
[61]  
Lu JH, 2006, ACTA VIROL, V50, P243
[62]   Evolution of high pathogenicity of H5 avian influenza virus: haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens [J].
Luczo, Jasmina M. ;
Tachedjian, Mary ;
Harper, Jennifer A. ;
Payne, Jean S. ;
Butler, Jeffrey M. ;
Sapats, Sandra I. ;
Lowther, Suzanne L. ;
Michalski, Wojtek P. ;
Stambas, John ;
Bingham, John .
SCIENTIFIC REPORTS, 2018, 8
[63]   A Histidine Residue of the Influenza Virus Hemagglutinin Controls the pH Dependence of the Conformational Change Mediating Membrane Fusion [J].
Mair, Caroline M. ;
Meyer, Tim ;
Schneider, Katjana ;
Huang, Qiang ;
Veit, Michael ;
Herrmann, Andreas .
JOURNAL OF VIROLOGY, 2014, 88 (22) :13189-13200
[64]   The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA [J].
Maurer-Stroh, Sebastian ;
Lee, Raphael Tc ;
Gunalan, Vithiagaran ;
Eisenhaber, Frank .
VIROLOGY JOURNAL, 2013, 10
[65]   Avian influenza in Chile: A successful experience [J].
Max, Vanessa ;
Herrera, Jose ;
Moreira, Ruben ;
Rojas, Hernan .
AVIAN DISEASES, 2007, 51 (01) :363-365
[66]   ISOLATION OF A HIGHLY PATHOGENIC INFLUENZA-VIRUS FROM TURKEYS [J].
MCNULTY, MS ;
ALLAN, GM ;
MCCRACKEN, RM ;
MCPARLAND, PJ .
AVIAN PATHOLOGY, 1985, 14 (01) :173-176
[67]   Unusual Influenza A Viruses in Bats [J].
Mehle, Andrew .
VIRUSES-BASEL, 2014, 6 (09) :3438-3449
[68]   Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics [J].
Minin, Vladimir N. ;
Bloomquist, Erik W. ;
Suchard, Marc A. .
MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (07) :1459-1471
[69]   A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens [J].
Munier, S. ;
Larcher, T. ;
Cormier-Aline, F. ;
Soubieux, D. ;
Su, B. ;
Guigand, L. ;
Labrosse, B. ;
Cherel, Y. ;
Quere, P. ;
Marc, D. ;
Naffakh, N. .
JOURNAL OF VIROLOGY, 2010, 84 (02) :940-952
[70]  
Naeem K, 1998, PROCEEDINGS OF THE FORTH INTERNATIONAL SYMPOSIUM ON AVIAN INFLUENZA, P31