A Rule Learning Multiobjective Particle Swarm Optimization

被引:0
作者
de Carvalho, A. B. [1 ]
Pozo, A. T. R. [1 ]
机构
[1] Univ Fed Parana, Dept Informat, BR-80060000 Curitiba, Parana, Brazil
关键词
Rule learning; Multiobjective Optimization; Particle Swarm Optimization;
D O I
10.1109/TLA.2009.5349048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiobjective Metaheuristics (MOMH) permit to conceive a complete novel approach to induce classifiers. In the Rule Learning problem, the use of MOMH permit that the properties of the rules can be expressed in different objectives, and then the algorithm finds these rules in an unique run by exploring Pareto dominance concepts. This work describes a Multiobjective Particle Swarm Optimization (MOPSO) algorithm that handles with numerical and discrete attributes. The algorithm is evaluated by using the area under ROC curve and the approximation sets produced by the algorithm are also analyzed following Multiobjective methodology.
引用
收藏
页码:478 / 486
页数:9
相关论文
共 15 条
[1]  
Asuncion Arthur, 2007, Uci machine learning repository
[2]  
Clark P, 1991, P 5 EUR WORK SESS LE, P151, DOI DOI 10.1007/BFB0017011
[3]  
Conover W.J., 1971, Practical Nonparametric Statistics
[4]  
DECARVALHO AB, 2008, P 2 WORKSH COMP INT
[5]  
Fawcett T, 2001, 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P131, DOI 10.1109/ICDM.2001.989510
[6]  
ISHIDA C, 2008, P EVOCOP 2008, P73
[7]  
Kennedy J., 2001, Swarm Intelligence
[8]  
Knowles J., 2006, A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers
[9]  
Lavrac N, 1999, LECT NOTES ARTIF INT, V1634, P174
[10]  
Mostaghim S, 2003, PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), P26, DOI 10.1109/SIS.2003.1202243