Conformal infinitesimal variations of submanifolds

被引:1
作者
Dajczer, Marcos [1 ]
Jimenez, Miguel Ibieta [2 ]
机构
[1] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
关键词
Euclidean submanifolds; Conformal infinitesimal variations; Conformal infinitesimal bendings;
D O I
10.1016/j.difgeo.2021.101721
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper belongs to the realm of conformal geometry and deals with Euclidean submanifolds that admit smooth variations that are infinitesimally conformal. Conformal variations of Euclidean submanifolds are a classical subject in differential geometry. In fact, already in 1917 Cartan classified parametrically the Euclidean hypersurfaces that admit nontrivial conformal variations. Our first main result is a Fundamental theorem for conformal infinitesimal variations. The second is a rigidity theorem for Euclidean submanifolds that lie in low codimension. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 18 条
[1]  
Cartan E., 1916, B SOC MATH FRANCE, V44, P65, DOI DOI 10.24033/BSMF.964
[2]  
Cartan E., 1917, B SOC MATH FRANCE, V45, P57, DOI DOI 10.24033/BSMF.97546.1129.02
[3]  
Cesaro E., 1896, LEZIONI GEOMETRIA IN
[4]   The infinitesimally bendable Euclidean hypersurfaces (vol 196, pg 1961, 2017) [J].
Dajczer, M. ;
Vlachos, Th. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :1981-1982
[5]   Compositions of isometric immersions in higher codimension [J].
Dajczer, M ;
Florit, LA .
MANUSCRIPTA MATHEMATICA, 2001, 105 (04) :507-517
[6]  
Dajczer M, 2000, MICH MATH J, V47, P529
[7]   INFINITESIMAL RIGIDITY OF EUCLIDEAN SUBMANIFOLDS [J].
DAJCZER, M ;
RODRIGUEZ, L .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (04) :939-949
[8]  
Dajczer M., PREPRINT
[9]  
Dajczer M., 2019, SUBMANIFOLD THEORY B, DOI [10.1007/978-1-4939-9644-5, DOI 10.1007/978-1-4939-9644-5]
[10]  
Dajczer M., GENUINE INFINITESIMA