Flexible High-Conductivity Carbon-Nanotube Interconnects Made by Rolling and Printing

被引:103
作者
Tawfick, S. [1 ]
O'Brien, K. [2 ]
Hart, A. J. [1 ]
机构
[1] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[2] Intel Corp, Hillsboro, OR 97214 USA
关键词
alignment; carbon nanotubes; interconnects; rolling; transfer printing; GROWTH; FILMS; TEMPERATURE; ELECTRODES; DEVICES; ARRAYS; DENSE;
D O I
10.1002/smll.200900741
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Applications of carbon nanotubes (CNTs) inflexible and complementary metal-oxide-semiconductor (CMOS)-based electronic and energy devices are impeded due to typically low CNT areal densities, growth temperatures that are incompatible with device substrates, and challenges in large-area alignment and interconnection. A scalable method for continuous fabrication and transfer printing of dense horizontally aligned CNT (HA-CNT) ribbon interconnects is presented. The process combines vertically aligned CNT (VA-CNT) growth by thermal chemical vapor deposition, a novel mechanical rolling process to transform the VA-CNTs to HA-CNTs, and adhesion-con trolled transfer printing without needing a carrier film. The rolling force determines the HA-CNT packing fraction and the HA-CNTs are processed by conventional lithography. An electrical resistivity of 2 m Omega . cm is measured for ribbons having 800-nm thickness, while the resistivity of copper is 100 times lower, a value that exceeds most CNT assemblies made to date, and significant improvements can be made in CNT structural quality. This rolling and printing process could be scaled to full wafer areas and more complex architectures such as continuous CNT sheets and multidirectional patterns could be achieved by straightforward design of the CNT growth process and/or multiple rolling and printing sequences.
引用
收藏
页码:2467 / 2473
页数:7
相关论文
共 32 条
[1]  
Alexander LE., 1969, X-ray Diffraction Methods in Polymer Scienc
[2]   BATCH-FABRICATED THIN-FILM ELECTRODES FOR STIMULATION OF THE CENTRAL AUDITORY-SYSTEM [J].
ANDERSON, DJ ;
NAJAFI, K ;
TANGHE, SJ ;
EVANS, DA ;
LEVY, KL ;
HETKE, JF ;
XUE, XL ;
ZAPPIA, JJ ;
WISE, KD .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1989, 36 (07) :693-704
[3]   Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications [J].
Atkinson, Ken R. ;
Hawkins, Stephen C. ;
Huynh, Chi ;
Skourtis, Chris ;
Dai, Jane ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Lee, Sergey B. ;
Aliev, Ali E. ;
Williams, Christopher D. ;
Baughman, Ray H. .
PHYSICA B-CONDENSED MATTER, 2007, 394 (02) :339-343
[4]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[5]  
CLOSE GF, 2007, EL DEV M 2007 IEDM 1, pB102
[6]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[7]   Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties [J].
Fischer, JE ;
Zhou, W ;
Vavro, J ;
Llaguno, MC ;
Guthy, C ;
Haggenmueller, R ;
Casavant, MJ ;
Walters, DE ;
Smalley, RE .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (04) :2157-2163
[8]   Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes [J].
Futaba, Don N. ;
Hata, Kenji ;
Yamada, Takeo ;
Hiraoka, Tatsuki ;
Hayamizu, Yuhei ;
Kakudate, Yozo ;
Tanaike, Osamu ;
Hatori, Hiroaki ;
Yumura, Motoo ;
Iijima, Sumio .
NATURE MATERIALS, 2006, 5 (12) :987-994
[9]   Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst [J].
Hart, AJ ;
Slocum, AH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (16) :8250-8257
[10]   Force output, control of film structure, and microscale shape transfer by carbon nanotube growth under mechanical pressure [J].
Hart, Anastasios John ;
Slocum, Alexander H. .
NANO LETTERS, 2006, 6 (06) :1254-1260