Periodicity of Y-Systems and Flat Connections

被引:12
作者
Andras Szenes [1 ,2 ]
机构
[1] Budapest Inst Technol, Dept Geometry, Inst Math, H-1111 Budapest, Hungary
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
关键词
Y-systems; cluster algebras; THERMODYNAMIC BETHE-ANSATZ; EQUATIONS; MODELS;
D O I
10.1007/s11005-009-0332-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a proof of the periodicity of Zamolodchikov's Y-system in the AxA case using an interpretation of the system as a condition of flatness of a certain graph connection. In our approach, the periodicity property appears as an identity among representations of a matrix as products of two-diagonal matrices.
引用
收藏
页码:217 / 230
页数:14
相关论文
共 14 条
[1]   CYCLIC L-OPERATOR RELATED WITH A 3-STATE R-MATRIX [J].
BAZHANOV, VV ;
KASHAEV, RM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) :607-623
[3]   Y-systems and generalized associahedra [J].
Fomin, S ;
Zelevinsky, A .
ANNALS OF MATHEMATICS, 2003, 158 (03) :977-1018
[4]  
FRENKEL E, 1995, I MATH RES LETT, V2, P677
[5]   Thermodynamic Bethe ansatz and three-fold triangulations [J].
Gliozzi, F ;
Tateo, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (22) :4051-4064
[6]  
HENRIQUES A, ARXIVMATHCO0604289
[7]   Affine Toda field theory as a 3-dimensional integrable system [J].
Kashaev, RM ;
Reshetikhin, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (02) :251-266
[8]   Quantum integrable models and discrete classical Hirota equations [J].
Krichever, I ;
Lipan, O ;
Wiegmann, P ;
Zabrodin, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (02) :267-304
[9]   FUNCTIONAL RELATIONS IN SOLVABLE LATTICE MODELS .1. FUNCTIONAL RELATIONS AND REPRESENTATION-THEORY [J].
KUNIBA, A ;
NAKANISHI, T ;
SUZUKI, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (30) :5215-5266
[10]   DYNKIN TBAS [J].
RAVANINI, F ;
VALLERIANI, A ;
TATEO, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (10) :1707-1727