DIANA-mAP: Analyzing miRNA from Raw NGS Data to Quantification

被引:8
作者
Alexiou, Athanasios [1 ,2 ]
Zisis, Dimitrios [2 ]
Kavakiotis, Ioannis [1 ]
Miliotis, Marios [1 ,2 ]
Koussounadis, Antonis [3 ]
Karagkouni, Dimitra [1 ,2 ]
Hatzigeorgiou, Artemis G. [1 ,2 ,3 ]
机构
[1] Univ Thessaly, DIANA Lab, Dept Comp Sci & Biomed Informat, Lamia 35131, Greece
[2] Hellenic Pasteur Inst, Athens 11521, Greece
[3] Univ Thessaly, Dept Elect & Comp Engn, Volos 38221, Greece
关键词
bioinformatics; NGS; small RNA-Seq; microRNA; analysis; pipeline; expression; quantification;
D O I
10.3390/genes12010046
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
microRNAs (miRNAs) are small non-coding RNAs (similar to 22 nts) that are considered central post-transcriptional regulators of gene expression and key components in many pathological conditions. Next-Generation Sequencing (NGS) technologies have led to inexpensive, massive data production, revolutionizing every research aspect in the fields of biology and medicine. Particularly, small RNA-Seq (sRNA-Seq) enables small non-coding RNA quantification on a high-throughput scale, providing a closer look into the expression profiles of these crucial regulators within the cell. Here, we present DIANA-microRNA-Analysis-Pipeline (DIANA-mAP), a fully automated computational pipeline that allows the user to perform miRNA NGS data analysis from raw sRNA-Seq libraries to quantification and Differential Expression Analysis in an easy, scalable, efficient, and intuitive way. Emphasis has been given to data pre-processing, an early, critical step in the analysis for the robustness of the final results and conclusions. Through modularity, parallelizability and customization, DIANA-mAP produces high quality expression results, reports and graphs for downstream data mining and statistical analysis. In an extended evaluation, the tool outperforms similar tools providing pre-processing without any adapter knowledge. Closing, DIANA-mAP is a freely available tool. It is available dockerized with no dependency installations or standalone, accompanied by an installation manual through Github.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 32 条
[1]  
Anders S., 2010, GENOME BIOL, V11, pR106, DOI [10.1186/gb-2010-11-10-r106, DOI 10.1186/gb-2010-11-10-r106]
[2]   miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis [J].
Andres-Leon, Eduardo ;
Nunez-Torres, Rocio ;
Rojas, Ana M. .
SCIENTIFIC REPORTS, 2016, 6
[3]  
Andrews S., 2010, FASTQC QUALITY CONTR
[4]   Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia [J].
Camps, Carme ;
Saini, Harpreet K. ;
Mole, David R. ;
Choudhry, Hani ;
Reczko, Martin ;
Guerra-Assuncao, Jose Afonso ;
Tian, Ya-Min ;
Buffa, Francesca M. ;
Harris, Adrian L. ;
Hatzigeorgiou, Artemis G. ;
Enright, Anton J. ;
Ragoussis, Jiannis .
MOLECULAR CANCER, 2014, 13
[5]  
Clough E, 2016, METHODS MOL BIOL, V1418, P93, DOI 10.1007/978-1-4939-3578-9_5
[6]   Kraken: A set of tools for quality control and analysis Of high-throughput sequence data [J].
Davis, Matthew P. A. ;
van Dongen, Stijn ;
Abreu-Goodger, Cei ;
Bartonicek, Nenad ;
Enright, Anton J. .
METHODS, 2013, 63 (01) :41-49
[7]   miRNA analysis with Prost! reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in three-spined stickleback and zebrafish [J].
Desvignes, Thomas ;
Batzel, Peter ;
Sydes, Jason ;
Eames, B. Frank ;
Postlethwait, John H. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[8]   MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep Sequencing [J].
Farazi, Thalia A. ;
Horlings, Hugo M. ;
ten Hoeve, Jelle J. ;
Mihailovic, Aleksandra ;
Halfwerk, Hans ;
Morozov, Pavel ;
Brown, Miguel ;
Hafner, Markus ;
Reyal, Fabien ;
van Kouwenhove, Marieke ;
Kreike, Bas ;
Sie, Daoud ;
Hovestadt, Volker ;
Wessels, Lodewyk F. A. ;
van de Vijver, Marc J. ;
Tuschl, Thomas .
CANCER RESEARCH, 2011, 71 (13) :4443-4453
[9]   The ENCODE (ENCyclopedia of DNA elements) Project [J].
Feingold, EA ;
Good, PJ ;
Guyer, MS ;
Kamholz, S ;
Liefer, L ;
Wetterstrand, K ;
Collins, FS ;
Gingeras, TR ;
Kampa, D ;
Sekinger, EA ;
Cheng, J ;
Hirsch, H ;
Ghosh, S ;
Zhu, Z ;
Pate, S ;
Piccolboni, A ;
Yang, A ;
Tammana, H ;
Bekiranov, S ;
Kapranov, P ;
Harrison, R ;
Church, G ;
Struhl, K ;
Ren, B ;
Kim, TH ;
Barrera, LO ;
Qu, C ;
Van Calcar, S ;
Luna, R ;
Glass, CK ;
Rosenfeld, MG ;
Guigo, R ;
Antonarakis, SE ;
Birney, E ;
Brent, M ;
Pachter, L ;
Reymond, A ;
Dermitzakis, ET ;
Dewey, C ;
Keefe, D ;
Denoeud, F ;
Lagarde, J ;
Ashurst, J ;
Hubbard, T ;
Wesselink, JJ ;
Castelo, R ;
Eyras, E ;
Myers, RM ;
Sidow, A ;
Batzoglou, S .
SCIENCE, 2004, 306 (5696) :636-640
[10]   miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades [J].
Friedlaender, Marc R. ;
Mackowiak, Sebastian D. ;
Li, Na ;
Chen, Wei ;
Rajewsky, Nikolaus .
NUCLEIC ACIDS RESEARCH, 2012, 40 (01) :37-52