A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery

被引:115
作者
Zhou, Jinqiu [1 ]
Ji, Haoqing [1 ]
Liu, Jie [1 ]
Qian, Tao [1 ]
Yan, Chenglin [1 ]
机构
[1] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Gel polymer electrolyte; Quasi-solid-state; Lithium sulfur battery; High ionic conductivity; GRAPHENE OXIDE; POLYSULFIDES; SPECTROSCOPY; CAPACITY; LIFE; SALT;
D O I
10.1016/j.ensm.2019.01.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium battery is regarded as high safety and high energy density next-generation energy storage device, but its poor lithium ionic conductivity severely limits its practical application. To address above issues, we report a new super-high ionic conductive gel polymer (SHGP) electrolyte (2.2 x 10(-3) S cm(-1) at 60 degrees C and 0.75 x 10(-3) S cm(-1) at 30 degrees C), which are significant characteristics for greatly improved quasi-solid-state lithium sulfur battery performance. Moreover, the SHGP electrolyte exhibited strong adsorptivity to lithium polysulfides as the polar functional groups in the SHGP electrolyte through chemical adsorption, leading to the suppressed shuttle effect, which was theoretically confirmed by density functional theory (DFT) calculations, molecular dynamics (MD) simulations and experimentally verified by in-situ UV/Vis results. Such high ionic polymer electrolyte enables a greatly improved specific capacity of 950 mAh g(-1) at 0.2 C and outstanding cycling performance for 400 cycles at 1.5 C, which is far beyond that of conventional poly (ethylene oxide) based quasi-solid-state battery.
引用
收藏
页码:256 / 264
页数:9
相关论文
共 50 条
[21]   Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries [J].
Liu, Xianghong ;
Si, Wenping ;
Zhang, Jun ;
Sun, Xiaolei ;
Deng, Junwen ;
Baunack, Stefan ;
Oswald, Steffen ;
Liu, Lifeng ;
Yan, Chenglin ;
Schmidt, Oliver G. .
SCIENTIFIC REPORTS, 2014, 4
[22]   Molecular force field for ionic liquids composed of triflate or bistriflylimide anions [J].
Lopes, JNC ;
Pádua, AAH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (43) :16893-16898
[23]   Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte [J].
Lu, Qingwen ;
He, Yan-Bing ;
Yu, Qipeng ;
Li, Baohua ;
Kaneti, Yusuf Valentino ;
Yao, Youwei ;
Kang, Feiyu ;
Yang, Quan-Hong .
ADVANCED MATERIALS, 2017, 29 (13)
[24]   Rechargeable Lithium-Sulfur Batteries [J].
Manthiram, Arumugam ;
Fu, Yongzhu ;
Chung, Sheng-Heng ;
Zu, Chenxi ;
Su, Yu-Sheng .
CHEMICAL REVIEWS, 2014, 114 (23) :11751-11787
[25]   Revised anisotropic site potentials for the water dimer and calculated properties [J].
Millot, C ;
Soetens, JC ;
Costa, MTCM ;
Hodges, MP ;
Stone, AJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (04) :754-770
[26]   Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification [J].
Ohta, Narumi ;
Takada, Kazunori ;
Zhang, Lianqi ;
Ma, Renzhi ;
Osada, Minoru ;
Sasaki, Takayoshi .
ADVANCED MATERIALS, 2006, 18 (17) :2226-+
[27]   Application of In Operando UV/Vis Spectroscopy in Lithium-Sulfur Batteries [J].
Patel, Manu U. M. ;
Dominko, Robert .
CHEMSUSCHEM, 2014, 7 (08) :2167-2175
[28]   A Facile Layer-by-Layer Approach for High-Areal-Capacity Sulfur Cathodes [J].
Qie, Long ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2015, 27 (10) :1694-+
[29]   A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation [J].
Quan, Shuai ;
Li, Songwei ;
Wang, Zhenxing ;
Yan, Xingru ;
Guo, Zhanhu ;
Shao, Lu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (26) :13758-13766
[30]   Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives [J].
Quartarone, Eliana ;
Mustarelli, Piercarlo .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (05) :2525-2540