Kernel-Based Local Meshless Method for Solving Multi-Dimensional Wave Equations in Irregular Domain

被引:0
作者
Uddin, Marjan [1 ]
Ali, Hazrat [1 ]
Ali, Amjad [1 ]
机构
[1] UET, Dept Basics Sci, Peshawar, Pakistan
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2015年 / 107卷 / 06期
关键词
Kernel functions; local meshless scheme; wave equation; complex shaped domain; RADIAL BASIS FUNCTIONS; BASIS FUNCTION INTERPOLATION; DATA APPROXIMATION SCHEME; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; COLLOCATION METHOD; MULTIQUADRICS; DECOMPOSITION; ALGORITHM; PARAMETER;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work explores the application of kernel based local meshless method for solving multi-dimensional wave equations in irregular domain. The method is tested for various types of boundary conditions in irregular shaped domain. The method is capable of solving multi-dimension large scaled problems in complex shaped domain.
引用
收藏
页码:463 / 479
页数:17
相关论文
共 64 条
[1]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[2]  
[Anonymous], 2003, Cambridge Monogr. Appl. Comput. Math.
[3]  
[Anonymous], 2007, MESHFREE APPROXIMATI
[4]  
[Anonymous], 2004, SCATTERED DATA APPRO
[5]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[6]   Error bounds for anisotropic RBF interpolation [J].
Beatson, Rick ;
Davydov, Oleg ;
Levesley, Jeremy .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (03) :512-527
[7]   On approximate cardinal preconditioning methods for solving PDEs with radial basis functions [J].
Brown, D ;
Ling, L ;
Kansa, E ;
Levesley, J .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2005, 29 (04) :343-353
[8]   THE PARAMETER R2 IN MULTIQUADRIC INTERPOLATION [J].
CARLSON, RE ;
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) :29-42
[9]   Local RBF-FD solutions for steady convection-diffusion problems [J].
Chandhini, G. ;
Sanyasiraju, Y. V. S. S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (03) :352-378
[10]  
Chen W., 2014, RECENT ADV RADIAL BA