Highly accurate colorectal cancer prediction model based on Raman spectroscopy using patient serum

被引:15
|
作者
Ito, Hiroaki [1 ]
Uragami, Naoyuki [1 ]
Miyazaki, Tomokazu [2 ]
Yang, William [3 ]
Issha, Kenji [4 ]
Matsuo, Kai [1 ]
Kimura, Satoshi [5 ,6 ]
Arai, Yuji [7 ]
Tokunaga, Hiromasa [8 ,9 ]
Okada, Saiko [7 ]
Kawamura, Machiko [10 ]
Yokoyama, Noboru [1 ]
Kushima, Miki [11 ]
Inoue, Haruhiro [1 ]
Fukagai, Takashi [12 ]
Kamijo, Yumi [13 ]
机构
[1] Showa Univ, Ctr Digest Dis, Koto Toyosu Hosp, Tokyo 1358577, Japan
[2] JSR Corp, Div Res, Tokyo 1050021, Japan
[3] BaySpec Inc, San Jose, CA 95131 USA
[4] Fuji Tech Res Inc, Yokohama, Kanagawa 2206215, Japan
[5] Showa Univ, Northern Yokohama Hosp, Dept Lab Med, Yokohama, Kanagawa 2248503, Japan
[6] Showa Univ, Northern Yokohama Hosp, Cent Clin Lab, Yokohama, Kanagawa 2248503, Japan
[7] Showa Univ, Dept Clin Lab, Koto Toyosu Hosp, Tokyo 1358577, Japan
[8] Showa Univ Hosp, Dept Clin Lab, Tokyo 1428555, Japan
[9] BML Inc, Tokyo 1510051, Japan
[10] Saitama Canc Ctr, Dept Hematol, Inamachi, Saitama 3620806, Japan
[11] Showa Univ, Koto Toyosu Hosp, Dept Pathol, Tokyo 1358577, Japan
[12] Showa Univ, Koto Toyosu Hosp, Dept Urol, Tokyo 1358577, Japan
[13] Showa Univ, Koto Toyosu Hosp, Tokyo 1358577, Japan
关键词
Colorectal cancer; Raman spectroscopy; Machine learning; Blood; Serum; Diagnosis; NONINVASIVE DETECTION; CARCINOMA SEQUENCE; OPTICAL DIAGNOSIS; PROSTATE-CANCER; BLOOD-SERUM; LABEL-FREE; DISCRIMINATION; SPECTRA; TISSUE; CEA;
D O I
10.4251/wjgo.v12.i11.1311
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND Colorectal cancer (CRC) is an important disease worldwide, accounting for the second highest number of cancer-related deaths and the third highest number of new cancer cases. The blood test is a simple and minimally invasive diagnostic test. However, there is currently no blood test that can accurately diagnose CRC. AIM To develop a comprehensive, spontaneous, minimally invasive, label-free, bloodbased CRC screening technique based on Raman spectroscopy. METHODS We used Raman spectra recorded using 184 serum samples obtained from patients undergoing colonoscopies. Patients with malignant tumor histories as well as those with cancers in organs other than the large intestine were excluded. Consequently, the specific diseases of 184 patients were CRC (12), rectal neuroendocrine tumor (2), colorectal adenoma (68), colorectal hyperplastic polyp (18), and others (84). We used the 1064-nm wavelength laser for excitation. The power of the laser was set to 200 mW. RESULTS Use of the recorded Raman spectra as training data allowed the construction of a boosted tree CRC prediction model based on machine learning. Therefore, the generalized R-2 values for CRC, adenomas, hyperplastic polyps, and neuroendocrine tumors were 0.9982, 0.9630, 0.9962, and 0.9986, respectively. CONCLUSION For machine learning using Raman spectral data, a highly accurate CRC prediction model with a high R-2 value was constructed. We are currently planning studies to demonstrate the accuracy of this model with a large amount of additional data.
引用
收藏
页码:1311 / 1324
页数:14
相关论文
共 50 条
  • [21] Spectral analysis of lung cancer serum using fluorescence and Raman spectroscopy
    Li, Xiaozhou
    Wang, Deli
    IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES IV, 2006, 6088
  • [22] Biochemical fingerprint of colorectal cancer cell lines using label-free live single-cell Raman spectroscopy
    Gala de Pablo, Julia
    Armistead, Fern J.
    Peyman, Sally A.
    Bonthron, David
    Lones, Michael
    Smith, Stephen
    Evans, Stephen D.
    JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (08) : 1323 - 1332
  • [23] Building an ensemble learning model for gastric cancer cell line classification via rapid raman spectroscopy
    Liu, Kunxiang
    Liu, Bo
    Zhang, Yuhong
    Wu, Qinian
    Zhong, Ming
    Shang, Lindong
    Wang, Yu
    Liang, Peng
    Wang, Weiguo
    Zhao, Qi
    Li, Bei
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 802 - 811
  • [24] Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques
    Li, Shaoxin
    Chen, Gong
    Zhang, Yanjiao
    Guo, Zhouyi
    Liu, Zhiming
    Xu, Junfa
    Li, Xueqiang
    Lin, Lin
    OPTICS EXPRESS, 2014, 22 (21): : 25895 - 25908
  • [25] The Use of Spectral Ellipsometry and Raman Spectroscopy in Screening Diagnostics of Colorectal Cancer
    V. N. Kruchinin
    M. V. Kruchinina
    Ya. I. Prudnikova
    E. V. Spesivtsev
    S. V. Rykhlitskii
    V. A. Volodin
    S. V. Shekhovtsov
    S. E. Pel’tek
    Optics and Spectroscopy, 2019, 127 : 170 - 176
  • [26] Advanced Raman Spectroscopy Based on Transfer Learning by Using a Convolutional Neural Network for Personalized Colorectal Cancer Diagnosis
    Kalatzis, Dimitris
    Spyratou, Ellas
    Karnachoriti, Maria
    Kouri, Maria Anthi
    Orfanoudakis, Spyros
    Koufopoulos, Nektarios
    Pouliakis, Abraham
    Danias, Nikolaos
    Seimenis, Ioannis
    Kontos, Athanassios G.
    Efstathopoulos, Efstathios P.
    OPTICS, 2023, 4 (02): : 310 - 320
  • [27] Breast cancer chemotherapy treatment monitoring based on serum sample Raman spectroscopy
    De la Torre-Gutierrez, L. G.
    Martinez-Zerega, B. E.
    Oseguera-Galindo, D. O.
    Aguilar-Lemarroy, A.
    Jave-Suarez, L. F.
    Torres-Gonzalez, L. A.
    Gonzalez-Solis, J. L.
    LASERS IN MEDICAL SCIENCE, 2022, 37 (09) : 3649 - 3659
  • [28] Cervical cancer detection based on serum sample surface enhanced Raman spectroscopy
    Sanchez-Rojo, S. A.
    Martinez-Zerega, B. E.
    Velazquez-Pedroza, E. F.
    Martinez-Espinosa, J. C.
    Torres-Gonzalez, L. A.
    Aguilar-Lemarroy, A.
    Jave-Suarez, L. F.
    Palomares-Anda, P.
    Gonzalez-Solis, J. L.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 213 - 218
  • [29] Raman spectroscopy on dried blood plasma allows diagnosis and monitoring of colorectal cancer
    Morasso, Carlo
    Daveri, Elena
    Bonizzi, Arianna
    Truffi, Marta
    Colombo, Francesco
    Danelli, Piergiorgio
    Albasini, Sara
    Rivoltini, Licia
    Mazzucchelli, Serena
    Sorrentino, Luca
    Corsi, Fabio
    MEDCOMM, 2024, 5 (11):
  • [30] Investigating the effects of Pentoxifylline on human breast cancer cells using Raman spectroscopy
    Goel, Peeyush N.
    Singh, S. P.
    Krishna, C. Murali
    Gude, R. P.
    JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2015, 8 (02)