Local bifurcation in symmetric coupled cell networks: Linear theory

被引:24
作者
Dias, Ana Paula S.
Lamb, Jeroen S. W.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Porto, Ctr Matemat, Dept Matemat Pura, P-4169007 Oporto, Portugal
基金
英国工程与自然科学研究理事会;
关键词
local bifurcation; coupled cell network; symmetry;
D O I
10.1016/j.physd.2006.08.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a coupled cell network of differential equations with finite symmetry group Gamma, where Gamma permutes cells transitively. We show how the structure of the coupled cell network, represented by a directed graph whose vertices represent individual cells and edges represent couplings, can be taken into account in the bifurcation analysis of a fully symmetric steady-state solution. We focus on the analysis of the linearized vector field at a fully symmetric equilibrium and show that in the case of active cells, if Gamma is Abelian the network structure does not influence the types of codimension one local bifurcations. We also show that beyond this context, when Gamma is not Abelian, cells are passive, or when considering local bifurcations of higher codimensions, anomalies due to the network structure may arise. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 25 条
[1]   ASYNCHRONOUS STATES IN NETWORKS OF PULSE-COUPLED OSCILLATORS [J].
ABBOTT, LF ;
VANVREESWIJK, C .
PHYSICAL REVIEW E, 1993, 48 (02) :1483-1490
[2]  
Adams J.F., 1969, LECT LIE GROUPS
[3]   TAMING SPATIOTEMPORAL CHAOS WITH DISORDER [J].
BRAIMAN, Y ;
LINDNER, JF ;
DITTO, WL .
NATURE, 1995, 378 (6556) :465-467
[4]   Dynamics of a ring of pulse-coupled oscillators: Group theoretic approach [J].
Bressloff, PC ;
Coombes, S ;
deSouza, B .
PHYSICAL REVIEW LETTERS, 1997, 79 (15) :2791-2794
[5]   STOCHASTIC RESONANCE WITHOUT TUNING [J].
COLLINS, JJ ;
CHOW, CC ;
IMHOFF, TT .
NATURE, 1995, 376 (6537) :236-238
[6]   Coupled cells with internal symmetry .1. Wreath products [J].
Dionne, B ;
Golubitsky, M ;
Stewart, I .
NONLINEARITY, 1996, 9 (02) :559-574
[7]   Coupled cells with internal symmetry .2. Direct products [J].
Dionne, B ;
Golubitsky, M ;
Stewart, I .
NONLINEARITY, 1996, 9 (02) :575-599
[8]   Combinatorial dynamics [J].
Field, M .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2004, 19 (03) :217-243
[9]   A CELLULAR AUTOMATON MODEL OF EXCITABLE MEDIA INCLUDING CURVATURE AND DISPERSION [J].
GERHARDT, M ;
SCHUSTER, H ;
TYSON, JJ .
SCIENCE, 1990, 247 (4950) :1563-1566
[10]   Patterns of synchrony in coupled cell networks with multiple arrows [J].
Golubitsky, M ;
Stewart, I ;
Török, A .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (01) :78-100