Oscillation and Asymptotic Behavior for nth-order Nonlinear Neutral Delay Dynamic Equations on Time Scales

被引:29
作者
Chen, Da-Xue [1 ]
机构
[1] Hunan Inst Engn, Dept Math & Phys, Xiangtan 411104, Hunan, Peoples R China
关键词
Oscillation; Asymptotic behavior; nth-order nonlinear neutral delay dynamic equation; Time scale; DIFFERENTIAL-EQUATIONS; CRITERIA;
D O I
10.1007/s10440-008-9341-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive some sufficient conditions for the oscillation and asymptotic behavior of the nth-order nonlinear neutral delay dynamic equations {a(t)psi(x(t)) [vertical bar(x(t) +p(t)x(tau(t)))(Delta n-1)vertical bar(alpha-1)(x(t) + p(t)x(tau(t)))(Delta n-1)](gamma)](Delta) + lambda F(t, x(delta(t))) = 0, on time scales, where alpha > 0 is a constant, gamma > 0 is a quotient of odd positive integers and lambda = +/-1. Our results in this paper not only extend and improve some known results but also present a valuable unified approach for the investigation of oscillation and asymptotic behavior of nth-order nonlinear neutral delay differential equations and nth-order nonlinear neutral delay difference equations. Examples are provided to show the importance of our main results.
引用
收藏
页码:703 / 719
页数:17
相关论文
共 28 条
[1]   Oscillation criteria for second-order nonlinear neutral delay dynamic equations [J].
Agarwal, RP ;
O'Regan, D ;
Saker, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :203-217
[2]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[3]   Oscillation criteria for certain nth order differential equations with deviating arguments [J].
Agarwal, RP ;
Grace, SR ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :601-622
[4]  
[Anonymous], 2000, OSCILLATION THEORY D, DOI DOI 10.1007/978-94-015-9401-1
[5]   Oscillation criteria for perturbed nonlinear dynamic equations [J].
Bohner, M ;
Saker, SH .
MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) :249-260
[6]   Oscillation for nonlinear second order dynamic equations on a time scale [J].
Bohner, M ;
Erbe, L ;
Peterson, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :491-507
[7]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[9]  
Chern JL, 1996, PUBL MATH-DEBRECEN, V48, P209
[10]   A necessary and sufficient condition for oscillation of the Sturm-Liouville dynamic equation on time scales [J].
Dosly, O ;
Hilger, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :147-158