Metric character of Hamilton-Jacobi equations

被引:28
作者
Siconolfi, A [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Hamilton-Jacobi equations; viscosity solutions; distance functions;
D O I
10.1090/S0002-9947-03-03237-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the metrics related to Hamilton-Jacobi equations of eikonal type. If no convexity conditions are assumed on the Hamiltonian, these metrics are expressed by an inf-sup formula involving certain level sets of the Hamiltonian. In the case where these level sets are star-shaped with respect to 0, we study the induced length metric and show that it coincides with the Finsler metric related to a suitable convexification of the equation.
引用
收藏
页码:1987 / 2009
页数:23
相关论文
共 14 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[3]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[4]  
BLUMENTHAL L., 1953, THEORY APPL DISTANCE
[5]  
Busemann H., 1955, GEOMETRY GEODESICS
[6]  
Busemann H., 1942, Metric Methods in Finsler Spaces and in the Foundations of Geometry
[7]  
Camilli F, 1999, INDIANA U MATH J, V48, P1111
[8]   Nonconvex degenerate Hamilton-Jacobi equations [J].
Camilli, F ;
Siconolfi, A .
MATHEMATISCHE ZEITSCHRIFT, 2002, 242 (01) :1-21
[9]  
COURANT R, 1962, METHODS MATH PHYSICS, V2
[10]   DIFFERENTIAL-GAMES AND REPRESENTATION FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI-ISAACS EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :773-797