Adaptive high-degree cubature Kalman filter in the presence of unknown measurement noise covariance matrix

被引:5
作者
Xu, Hong [1 ]
Yuan, Huadong [2 ]
Duan, Keqing [2 ]
Xie, Wenchong [2 ]
Wang, Yongliang [2 ]
机构
[1] Naval Univ Engn, Dept Elect Engn, Wuhan, Hubei, Peoples R China
[2] Wuhan Early Warning Acad, Wuhan, Hubei, Peoples R China
来源
JOURNAL OF ENGINEERING-JOE | 2019年 / 2019卷 / 19期
基金
中国国家自然科学基金;
关键词
Kalman filters; state estimation; covariance matrices; Bayes methods; nonlinear filters; variational techniques; variational Bayesian method; system state estimation; nonlinear-state estimation problem; unknown measurement noise covariance matrix; adaptive high-degree cubature Kalman filter; unknown covariance matrix online; high-degree cubature rule; adaptive HCKF; unknown MN covariance matrix; nonlinear systems; radial integrals; spherical integrals; INFERENCE;
D O I
10.1049/joe.2019.0389
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Here, the authors address the state estimation problem of non-linear systems in the presence of unknown measurement noise (MN) covariance matrix. Recently, a high-degree cubature Kalman filter (HCKF) has been successfully used in the non-linear-state estimation problem with arbitrary degrees of accuracy in computing the spherical and radial integrals. However, the efficiency of the HCKF depends on a priori knowledge of the MN. To improve the performance of HCKF for non-linear systems with unknown MN covariance matrix, the authors proposed an adaptive HCKF, which combines the high-degree cubature rule with the variational Bayesian (VB) method to jointly estimate the system state and the unknown covariance matrix online. Experimental results demonstrate the effectiveness of the proposed filter.
引用
收藏
页码:5697 / 5701
页数:5
相关论文
共 14 条
[1]   Approximate Inference in State-Space Models With Heavy-Tailed Noise [J].
Agamennoni, Gabriel ;
Nieto, Juan I. ;
Nebot, Eduardo M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) :5024-5037
[2]   Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Elliott, Robert J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :953-977
[3]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[4]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[5]  
Chen Z., 2003, Statistics, V182, P1, DOI DOI 10.1080/02331880309257
[6]   Fully symmetric interpolatory rules for multiple integrals over hyper-spherical surfaces [J].
Genz, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :187-195
[7]   High-degree cubature Kalman filter [J].
Jia, Bin ;
Xin, Ming ;
Cheng, Yang .
AUTOMATICA, 2013, 49 (02) :510-518
[8]  
Ma TL, 2016, 2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), P232, DOI 10.1109/CGNCC.2016.7828789
[9]   A Systematization of the Unscented Kalman Filter Theory [J].
Menegaz, Henrique M. T. ;
Ishihara, Joao Y. ;
Borges, Geovany A. ;
Vargas, Alessandro N. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (10) :2583-2598
[10]   Analysis of a variational Bayesian adaptive cubature Kalman filter tracking loop for high dynamic conditions [J].
Miao, Zhi-yong ;
Lv, Yun-long ;
Xu, Ding-jie ;
Shen, Feng ;
Pang, Shun-wan .
GPS SOLUTIONS, 2017, 21 (01) :111-122