Identification and characterization of cell-bound membrane vesicles

被引:15
作者
Tang, Qisheng [1 ,2 ]
Zhang, Xiaojun [1 ]
Zhang, Wendiao [1 ]
Zhao, Siyuan [1 ]
Chen, Yong [1 ,2 ]
机构
[1] Nanchang Univ, Inst Adv Study, Nanoscale Sci & Technol Lab, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Coll Life Sci, Nanchang, Jiangxi, Peoples R China
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2017年 / 1859卷 / 05期
基金
中国国家自然科学基金;
关键词
Membrane vesicles; Human umbilical vein endothelial cells (HUVECs); Human hepatoma HepG-2 cells; Detergent resistance; Lipid rafts; EXTRACELLULAR VESICLES; ENDOTHELIAL MICROPARTICLES; IN-VITRO; LIPID RAFTS; EXOSOMES; RELEASE; ACTIVATION; SURFACE; PLASMA;
D O I
10.1016/j.bbamem.2017.01.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In contrast to the released/circulating membrane vesicles (extracellular vesicles), cell-bound membrane vesicles are poorly identified and characterized. In this study, cell-bound membrane vesicles on human umbilical vein endothelial cells (HUVECs) and human hepatoma HepG-2 cells were investigated. We identified that cell-bound membrane vesicles are not co-localized with the major markers for extracellular vesicles (e.g. phosphatidylserine, CD63, CD107 alpha, CD31, and DNA fragments for the three well-known types of extracellular vesicles) and for intracellular organelles with similar sizes (e.g. MitoTracker and LAMP1/LAMP3 for mitochondria and multivesicular bodies or lysosomes, respectively). The data imply that cell-bound membrane vesicles are neither the precursors of extracellular vesicles nor a false structure pushed up by an intracellular organelle but probably a novel unknown structure in the plasma membrane. Moreover, we revealed that cell-bound membrane vesicles are resistant to various detergents including but probably not limited to Triton X-100, SDS, and saponin. We further characterized that these unique vesicles are soluble in organic solvents (e.g. chloroform-methanol mixture and ethanol) which can be prevented by a lipid-stabilizing fixative (e.g. OsO4) and that they are co-localized with, but do not monopolize, the major markers (e.g. caveolin-1 and GM1) for lipid rafts (a nano-sized detergent-resistant domains in the plasma membrane). The data imply that cell-bound membrane vesicles contain the lipid component and lipid rafts. Involvement of other specific unknown components might explain the detergent resistance of cell-bound membrane vesicles. Further research will mainly depend on the establishment of an effective approach for isolation/purification of these vesicles from the plasma membrane. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:756 / 766
页数:11
相关论文
共 28 条
[1]   In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant [J].
Combes, V ;
Simon, AC ;
Grau, GE ;
Arnoux, D ;
Camoin, L ;
Sabatier, F ;
Mutin, M ;
Sanmarco, M ;
Sampol, J ;
Dignat-George, F .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (01) :93-102
[2]   p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles [J].
Curti, A. M. ;
Wilkinson, P. F. ;
Gui, M. ;
Gales, T. L. ;
Hu, E. ;
Edelberg, J. M. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2009, 7 (04) :701-709
[3]   Lipid raft-associated protein sorting in exosomes [J].
de Gassart, A ;
Géminard, C ;
Février, B ;
Raposo, G ;
Vidal, M .
BLOOD, 2003, 102 (13) :4336-4344
[4]   Proteomic Profiling of Detergent Resistant Membranes (Lipid Rafts) of Prostasomes [J].
Dubois, Louise ;
Ronquist, Karl . Goran ;
Ek, Bo ;
Ronquist, Gunnar ;
Larsson, Anders .
MOLECULAR & CELLULAR PROTEOMICS, 2015, 14 (11) :3015-3022
[5]   Analytical Challenges of Extracellular Vesicle Detection: A Comparison of Different Techniques [J].
Erdbruegger, Uta ;
Lannigan, Joanne .
CYTOMETRY PART A, 2016, 89A (02) :123-134
[6]   Exosomes:: endosomal-derived vesicles shipping extracellular messages [J].
Février, B ;
Raposo, G .
CURRENT OPINION IN CELL BIOLOGY, 2004, 16 (04) :415-421
[7]   Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles [J].
Gyoergy, Bence ;
Szabo, Tamas G. ;
Pasztoi, Maria ;
Pal, Zsuzsanna ;
Misjak, Petra ;
Aradi, Borbala ;
Laszlo, Valeria ;
Pallinger, Eva ;
Pap, Erna ;
Kittel, Agnes ;
Nagy, Gyoergy ;
Falus, Andras ;
Buzas, Edit I. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2011, 68 (16) :2667-2688
[8]   Cholesterol depletion induces large scale domain segregation in living cell membranes [J].
Hao, MM ;
Mukherjee, S ;
Maxfield, FR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13072-13077
[9]   Focus on Extracellular Vesicles: Introducing the Next Small Big Thing [J].
Kalra, Hina ;
Drummen, Gregor P. C. ;
Mathivanan, Suresh .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (02)
[10]   Cooperation between β- and γ-cytoplasmic actins in the mechanical regulation of endothelial microparticle formation [J].
Latham, Sharissa L. ;
Chaponnier, Christine ;
Dugina, Vera ;
Couraud, Pierre-Olivier ;
Grau, Georges E. R. ;
Combes, Valery .
FASEB JOURNAL, 2013, 27 (02) :672-683