Dynamics for a class of stochastic SIS epidemic models with nonlinear incidence and periodic coefficients

被引:27
作者
Rifhat, Ramziya [1 ,2 ]
Wang, Lei [2 ]
Teng, Zhidong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xinjiang Med Univ, Coll Med Engn & Technol, Urumqi 830011, Peoples R China
关键词
Periodic stochastic epidemic model; Nonlinear incidence; Extinction; Permanence in the mean; Stochastic periodic solution; STATIONARY DISTRIBUTION; EXTINCTION; PERSISTENCE; THRESHOLD; STABILITY;
D O I
10.1016/j.physa.2017.04.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the dynamics of a class of periodic stochastic SIS epidemic models with general nonlinear incidence f(S,I). Some sufficient conditions on the permanence in the mean and extinction of positive solutions with probability one are established. By using the Khasminskii's boundary periodic Markov processes, the existence of stochastic nontrivial periodic solution for the models is also obtained. The numerical simulations are given to illustrate the main theoretical results and some interesting conjectures are presented. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 190
页数:15
相关论文
共 31 条
[1]   On the stochastic SIS epidemic model in a periodic environment [J].
Bacaer, Nicolas .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 71 (02) :491-511
[2]   A stochastic SIRS epidemic model with infectious force under intervention strategies [J].
Cai, Yongli ;
Kang, Yun ;
Banerjee, Malay ;
Wang, Weiming .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) :7463-7502
[3]   On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment [J].
Carletti, M .
MATHEMATICAL BIOSCIENCES, 2002, 175 (02) :117-131
[4]   A stochastic model for internal HIV dynamics [J].
Dalal, Nirav ;
Greenhalgh, David ;
Mao, Xuerong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1084-1101
[5]   Mathematical analysis of HIV/AIDS stochastic dynamic models [J].
Emvudu, Yves ;
Bongor, Danhree ;
Koina, Rodoumta .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (21-22) :9131-9151
[6]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[7]   The SIS epidemic model with Markovian switching [J].
Gray, Alison ;
Greenhalgh, David ;
Mao, Xuerong ;
Pan, Jiafeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :496-516
[8]   An algorithmic introduction to numerical simulation of stochastic differential equations [J].
Higham, DJ .
SIAM REVIEW, 2001, 43 (03) :525-546
[9]  
Khasminskii R., 2011, STOCHASTIC STABILITY, V66
[10]   Qualitative Study of a Nonlinear Stochastic SIRS Epidemic System [J].
Lahrouz, Aadil ;
Settati, Adel .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (06) :992-1008