Existence and uniqueness of periodic solutions for Rayleigh type p-Laplacian equation

被引:6
作者
He, Zhanbing [3 ]
Wang, Wentao [2 ]
Yi, Xuejun [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
[3] Hunan Mass Media Vocat Tech Coll, Changsha 410100, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
p-Laplacian; Rayleigh equation; Periodic solution; Coincidence degree;
D O I
10.1016/j.cam.2009.06.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the Rayleigh type p-Laplacian equation of the form (phi(p)(x'(t)))' + f (t, x'(t)) + g(t, x(t)) = e(t). (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:558 / 564
页数:7
相关论文
共 8 条
[1]   Periodic solutions for a Rayleigh type equation with a variable coefficient ahead of the nonlinear term [J].
Gao, Fabao ;
Lu, Shiping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :254-258
[2]   New results of periodic solutions for forced Rayleigh-type equations [J].
Li, Yaqiong ;
Huang, Lihong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) :98-105
[3]   On the existence of periodic solutions to p-Laplacian Rayleigh differential equation with a delay [J].
Lu, Shiping ;
Gui, Zhanjie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :685-702
[4]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514
[5]   Periodic solutions for nonlinear systems with p-Laplacian-like operators [J].
Manasevich, R ;
Mawhin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 145 (02) :367-393
[6]  
Wang G, 2000, INT J MATH MATH SCI, V23, P65
[7]   A priori bounds for periodic solutions of a delay Rayleigh equation [J].
Wang, GQ ;
Cheng, SS .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :41-44
[8]   Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments [J].
Zong, Minggang ;
Liang, Hongzhen .
APPLIED MATHEMATICS LETTERS, 2007, 20 (01) :43-47