Quantization of polysymplectic manifolds

被引:4
|
作者
Blacker, Casey [1 ]
机构
[1] East China Normal Univ, Dept Math, 500 Dongchuan Rd, Shanghai, Peoples R China
基金
中国博士后科学基金;
关键词
Polysymplectic manifolds; Geometric quantization; Moment maps; Dirac operators; FIELD-THEORY; GEOMETRIC-QUANTIZATION; PRESYMPLECTIC MANIFOLDS; MULTIPLICITIES FORMULA; MODULI SPACE; FLAT; EXISTENCE; CALCULUS;
D O I
10.1016/j.geomphys.2019.103480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We adapt the framework of geometric quantization to the polysymplectic setting. Considering prequantization as the extension of symmetries from an underlying polysymplectic manifold to the space of sections of a Hermitian vector bundle, a natural definition of prequantum vector bundle is obtained which incorporates in an essential way the action of the space of coefficients. We define quantization with respect to a polarization and to a spin(c) structure. In the presence of a complex polarization, it is shown that the polysymplectic Guillemin-Sternberg conjecture is false. We conclude with potential extensions and applications. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] SPIN-QUANTIZATION COMMUTES WITH REDUCTION
    Paradan, Paul-Emile
    JOURNAL OF SYMPLECTIC GEOMETRY, 2012, 10 (03) : 389 - 422
  • [32] QUANTISING PROPER ACTIONS ON SPINc-MANIFOLDS
    Hochs, Peter
    Mathai, Varghese
    ASIAN JOURNAL OF MATHEMATICS, 2017, 21 (04) : 631 - 686
  • [33] Branes and quantization
    Gukov, Sergei
    Witten, Edward
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (05) : 1445 - 1518
  • [34] Geometric quantization of symplectic maps and Witten's asymptotic conjecture
    Ioos, Louis
    ADVANCES IN MATHEMATICS, 2021, 387
  • [35] Quantization of algebraic reduction
    Sniatycki, Jedrzej
    XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 27 - 36
  • [36] ON THE QUANTIZATION OF POLYGON SPACES
    Charles, L.
    ASIAN JOURNAL OF MATHEMATICS, 2010, 14 (01) : 109 - 152
  • [37] QUANTIZATION OF SINGULAR REDUCTION
    Bates, L.
    Cushman, R.
    Hamilton, M.
    Sniatycki, J.
    REVIEWS IN MATHEMATICAL PHYSICS, 2009, 21 (03) : 315 - 371
  • [38] FORMAL GEOMETRIC QUANTIZATION
    Paradan, Paul-Emile
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (01) : 199 - 238
  • [39] Introduction to coherent quantization
    Arnold Neumaier
    Arash Ghaani Farashahi
    Analysis and Mathematical Physics, 2022, 12
  • [40] Introduction to coherent quantization
    Neumaier, Arnold
    Farashahi, Arash Ghaani
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (04)