Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond

被引:12
作者
Huang, Ding [1 ]
Abulnaga, Alex [1 ]
Welinski, Sacha [1 ]
Raha, Mouktik [1 ]
Thompson, Jeff D. [1 ]
Leon, Nathalie P. De [1 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
FREQUENCY-CONVERSION; WAVELENGTH EXCHANGE; TRANSLATION; CAVITY; SCALE; GAAS; ENTANGLEMENT; GENERATION; EFFICIENT; CHI((2));
D O I
10.1364/OE.418081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Integrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chip, III-V diamond platform designed for neutral silicon vacancy (SiV0) centers in diamond that circumvents the need for etching the diamond substrate. Through evanescent coupling to SiV0 centers near the surface of diamond, the platform will enable Purcell enhancement of SiV0 emission and efficient frequency conversion to the telecommunication C-band. The proposed structures can be realized with readily available fabrication techniques. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:9174 / 9189
页数:16
相关论文
共 59 条
[31]   Transfer-printed single-photon sources coupled to wire waveguides [J].
Katsumi, Ryota ;
Ota, Yasutomo ;
Kakuda, Masahiro ;
Iwamoto, Satoshi ;
Arakawa, Yasuhiko .
OPTICA, 2018, 5 (06) :691-694
[32]   Surface-passivated high-Q GaAs photonic crystal nanocavity with quantum dots [J].
Kuruma, Kazuhiro ;
Ota, Yasutomo ;
Kakuda, Masahiro ;
Iwamoto, Satoshi ;
Arakawa, Yasuhiko .
APL PHOTONICS, 2020, 5 (04)
[33]  
Li Q, 2016, NAT PHOTONICS, V10, P406, DOI [10.1038/nphoton.2016.64, 10.1038/NPHOTON.2016.64]
[34]   Interfacing single photons and single quantum dots with photonic nanostructures [J].
Lodahl, Peter ;
Mahmoodian, Sahand ;
Stobbe, Soren .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :347-400
[35]   Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics [J].
Lu, Xiyuan ;
Moille, Gregory ;
Li, Qing ;
Westlyl, Daron A. ;
Singh, Anshuman ;
Rao, Ashutosh ;
Yu, Su-Peng ;
Briles, Travis C. ;
Papp, Scott B. ;
Srinivasan, Kartik .
NATURE PHOTONICS, 2019, 13 (09) :593-+
[36]   Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers [J].
Marhic, ME ;
Park, Y ;
Yang, FS ;
Kazovsky, LG .
OPTICS LETTERS, 1996, 21 (23) :1906-1908
[37]   Translation of quantum states by four-wave mixing in fibers [J].
McKinstrie, CJ ;
Harvey, JD ;
Radic, S ;
Raymer, MG .
OPTICS EXPRESS, 2005, 13 (22) :9131-9142
[38]   Cavity optomechanics in gallium phosphide microdisks [J].
Mitchell, Matthew ;
Hryciw, Aaron C. ;
Barclay, Paul E. .
APPLIED PHYSICS LETTERS, 2014, 104 (14)
[39]   Toward wafer-scale diamond nano- and quantum technologies [J].
Nelz, Richard ;
Goerlitz, Johannes ;
Herrmann, Dennis ;
Slablab, Abdallah ;
Challier, Michel ;
Radtke, Mariusz ;
Fischer, Martin ;
Gsell, Stefan ;
Schreck, Matthias ;
Becher, Christoph ;
Neu, Elke .
APL MATERIALS, 2019, 7 (01)
[40]   An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond [J].
Nguyen, C. T. ;
Sukachev, D. D. ;
Bhaskar, M. K. ;
Machielse, B. ;
Levonian, D. S. ;
Knall, E. N. ;
Stroganov, P. ;
Chia, C. ;
Burek, M. J. ;
Riedinger, R. ;
Park, H. ;
Loncar, M. ;
Lukin, M. D. .
PHYSICAL REVIEW B, 2019, 100 (16)