Adaptive finite element for semi-linear convection-diffusion problems

被引:2
|
作者
Pouly, L
Pousin, J
机构
[1] SWISS FED INST TECHNOL,DEPT MATH,CH-1015 LAUSANNE,SWITZERLAND
[2] INST NATL SCI APPL,MATH MODELLING & SCI COMP LAB,CNRS,UMR 5585,F-69621 VILLEURBANNE,FRANCE
关键词
numerical analysis; nonlinear; elliptic equations; finite element; error estimates;
D O I
10.1023/A:1018946919497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article a strategy of adaptive finite element for semi-linear problems, based on minimizing a residual-type estimator, is reported. We get an a posteriori error estimate which is asymptotically exact when the mesh size h tends to zero. By considering a model problem, the quality of this estimator is checked. It is numerically shown that without constraint on the mesh size h, the efficiency of the a posteriori error estimate can fail dramatically. This phenomenon is analysed and an algorithm which equidistributes the local estimators under the constraint h less than or equal to h(max) is proposed. This algorithm allows to improve the computed solution for semi-linear convection-diffusion problems, and can be used for stabilizing the Lagrange finite element method for linear convection-diffusion problems.
引用
收藏
页码:235 / 259
页数:25
相关论文
共 50 条