Regularity for fully nonlinear parabolic equations with oblique boundary data

被引:3
作者
Chatzigeorgiou, Georgiana [1 ]
Milakis, Emmanouil [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, POB 20537, CY-1678 Nicosia, Cyprus
关键词
Fully nonlinear parabolic equations; oblique boundary conditions; viscosity solutions; INTERMEDIATE SCHAUDER THEORY; ELLIPTIC-EQUATIONS; DERIVATIVE PROBLEMS;
D O I
10.4171/RMI/1214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain, up to a flat boundary, regularity results in parabolic Holder spaces for viscosity solutions of fully nonlinear parabolic equations with oblique boundary conditions.
引用
收藏
页码:775 / 820
页数:46
相关论文
共 23 条
[1]  
[Anonymous], 1995, FULLY NONLINEAR ELLI
[2]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[3]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[4]   ON PARABOLIC OBLIQUE DERIVATIVE PROBLEM WITH HOLDER CONTINUOUS COEFFICIENTS [J].
GARRONI, MG ;
SOLONNIKOV, VA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (14) :1323-1372
[5]  
Gilbarg D., 1998, ELLIPTIC PARTIAL DIF, V224
[6]   An Introduction to Fully Nonlinear Parabolic Equations [J].
Imbert, Cyril ;
Silvestre, Luis .
INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 :7-88
[7]   Nonlinear oblique derivative problems for singular degenerate parabolic equations on a general domain [J].
Ishii, H ;
Sato, MH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (7-8) :1077-1098
[8]   FULLY NONLINEAR OBLIQUE DERIVATIVE PROBLEMS FOR NONLINEAR 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (03) :633-661
[9]   Regularity for Fully Nonlinear Elliptic Equations with Oblique Boundary Conditions [J].
Li, Dongsheng ;
Zhang, Kai .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (03) :923-967
[10]  
Lieberman GM, 2013, OBLIQUE DERIVATIVE PROBLEMS FOR ELLIPTIC EQUATIONS, P1, DOI 10.1142/8679