New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase

被引:12
作者
Attia, Mohamed A. [1 ,2 ,5 ]
Brumer, Harry [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Michael Smith Labs, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Chem, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Bot, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC, Canada
[5] Alexandria Univ, Fac Pharm, Alexandria, Egypt
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
carbohydrate-binding modules (CBMs); glycoside hydrolase; xyloglucan; plant biomass; Bacteroidetes; Cellvibrio; Gammaproteobacteria; carbohydrate-active enzyme; mannan; polysaccharide; xyloglucanase; HYDROLASE FAMILY; PURIFICATION; RECOGNITION; DOMAINS; ENZYMES; SEQUENCE; COMPLEX; SPECIFICITY; INSIGHTS; AMYLASE;
D O I
10.1128/AEM.02634-20
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Carbohydrate-binding modules (CBMs) are usually appended to carbohydrate-active enzymes (CAZymes) and serve to potentiate catalytic activity, for example, by increasing substrate affinity. The Gram-negative soil saprophyte Cellvibrio japonicus is a valuable source for CAZyme and CBM discovery and characterization due to its innate ability to degrade a wide array of plant polysaccharides. Bioinformatic analysis of the CJA_2959 gene product from C. japonicus revealed a modular architecture consisting of a fibronectin type III (Fn3) module, a cryptic module of unknown function (X181), and a glycoside hydrolase family 5 subfamily 4 (GHS_4) catalytic module. We previously demonstrated that the last of these, CjGH5F, is an efficient and specific endo-xyloglucanase (M. A. Attia, C. E. Nelson, W. A. Offen, N. Jain, et al., Biotechnol Biofuels 11:45, 2018, https://doi.org/10.1186/s13068-018-1039-6). In the present study, C-terminal fusion of superfolder green fluorescent protein in tandem with the Fn3-X181 modules enabled recombinant production and purification from Escherichia coli. Native affinity gel electrophoresis revealed binding specificity for the terminal galactose-containing plant polysaccharides galactoxyloglucan and galactomannan. Isothermal titration calorimetry further evidenced a preference for galactoxyloglucan polysaccharide over short oligosaccharides comprising the limit-digest products of CjGH5F. Thus, our results identify the X181 module as the defining member of a new CBM family, CBM88. In addition to directly revealing the function of this CBM in the context of xyloglucan metabolism by C. japonicus, this study will guide future bioinformatic and functional analyses across microbial (meta)genomes. IMPORTANCE This study reveals carbohydrate-binding module family 88 (CBM88) as a new family of galactose-binding protein modules, which are found in series with diverse microbial glycoside hydrolases, polysaccharide lyases, and carbohydrate esterases. The definition of CBM88 in the carbohydrate-active enzymes classification (http:// www.cazy.org/CBM88.html) will significantly enable future microbial (meta)genome analysis and functional studies.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 73 条
[1]   The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase [J].
Abbott, D. Wade ;
Boraston, Alisdair B. .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 368 (05) :1215-1222
[2]   Using structure to inform carbohydrate binding module function [J].
Abbott, D. Wade ;
van Bueren, Alicia Lammerts .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2014, 28 :32-40
[3]   QUANTITATIVE APPROACHES TO THE ANALYSIS OF CARBOHYDRATE-BINDING MODULE FUNCTION [J].
Abbott, D. Wade ;
Boraston, Alisdair B. .
CELLULASES, 2012, 510 :211-231
[4]   Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes [J].
Abbott, Wade ;
Alber, Orly ;
Bayer, Ed ;
Berrin, Jean-Guy ;
Boraston, Alisdair ;
Brumer, Harry ;
Brzezinski, Ryszard ;
Clarke, Anthony ;
Cobucci-Ponzano, Beatrice ;
Cockburn, Darrell ;
Coutinho, Pedro ;
Czjzek, Mirjam ;
Dassa, Bareket ;
Davies, Gideon John ;
Eijsink, Vincent ;
Eklof, Jens ;
Felice, Alfons ;
Ficko-Blean, Elizabeth ;
Pincher, Geoff ;
Fontaine, Thierry ;
Fujimoto, Zui ;
Fujita, Kiyotaka ;
Fushinobu, Shinya ;
Gilbert, Harry ;
Gloster, Tracey ;
Goddard-Borger, Ethan ;
Greig, Ian ;
Hehemann, Jan-Hendrik ;
Hemsworth, Glyn ;
Henrissat, Bernard ;
Hidaka, Masafumi ;
Hurtado-Guerrero, Ramon ;
Igarashi, Kiyohiko ;
Ishida, Takuya ;
Janecek, Stefan ;
Jongkees, Seino ;
Juge, Nathalie ;
Kaneko, Satoshi ;
Katayama, Takane ;
Kitaoka, Motomitsu ;
Konno, Naotake ;
Kracher, Daniel ;
Kulminskaya, Anna ;
van Bueren, Alicia Lammerts ;
Larsen, Sine ;
Lee, Junho ;
Linder, Markus ;
LoLeggio, Leila ;
Ludwig, Roland ;
Luis, Ana .
GLYCOBIOLOGY, 2018, 28 (01) :3-8
[5]   ADHESION MOLECULES AND ANIMAL DEVELOPMENT [J].
ANDERSON, H .
EXPERIENTIA, 1990, 46 (01) :2-13
[6]  
[Anonymous], 2008, Biochemist, DOI DOI 10.1042/BIO03004026
[7]   Advances in molecular engineering of carbohydrate-binding modules [J].
Armenta, Silvia ;
Moreno-Mendieta, Silvia ;
Sanchez-Cuapio, Zaira ;
Sanchez, Sergio ;
Rodriguez-Sanoja, Romina .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2017, 85 (09) :1602-1617
[8]   Substrate specificity, regiospecificity, and processivity in glycoside hydrolase family 74 [J].
Arnal, Gregory ;
Stogios, Peter J. ;
Asohan, Jathavan ;
Attia, Mohamed A. ;
Skarina, Tatiana ;
Viborg, Alexander Holm ;
Henrissat, Bernard ;
Savchenko, Alexei ;
Brumer, Harry .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (36) :13233-13247
[9]  
Arnal G, 2017, METHODS MOL BIOL, V1588, P3, DOI 10.1007/978-1-4939-6899-2_1
[10]   Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5) [J].
Aspeborg, Henrik ;
Coutinho, Pedro M. ;
Wang, Yang ;
Brumer, Harry, III ;
Henrissat, Bernard .
BMC EVOLUTIONARY BIOLOGY, 2012, 12