Continuous modules are clean

被引:73
作者
Camillo, V. P.
Khurana, D.
Lam, T. Y.
Nicholson, W. K. [1 ]
Zhou, Y.
机构
[1] Mem Univ Newfoundland, Dept Math, St John, NF A1C 5S7, Canada
[2] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Panjab Univ, Dept Math, Chandigarh 160014, India
[5] Univ Iowa, Dept Math, Iowa City, IA 52246 USA
关键词
clean endomorphism rings; continuous and discrete modules;
D O I
10.1016/j.jalgebra.2006.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is said to be clean if every element of R is a sum of an idempotent and a unit. The class of clean rings is quite large and includes, for instance, serniperfect rings (and thus finite rings), and rings of linear transformations of vector spaces. We prove that the endomorphism ring of every continuous (or discrete) module is clean. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 111
页数:18
相关论文
共 35 条
[1]  
[Anonymous], 1998, PROGR MATH, V167
[2]   INJECTIVE AND SUBJECTIVE ENDOMORPHISMS OF FINITELY GENERATED MODULES [J].
ARMENDARIZ, EP ;
FISHER, JW ;
SNIDER, RL .
COMMUNICATIONS IN ALGEBRA, 1978, 6 (07) :659-672
[3]   Left cotorsion rings [J].
Asensio, PAG ;
Herzog, I .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :303-309
[4]   A characterization of unit regular rings [J].
Camillo, VP ;
Khurana, D .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) :2293-2295
[5]   EXCHANGE RINGS, UNITS AND IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4737-4749
[6]   POWER CANCELLATION FOR ARTINIAN-MODULES [J].
CAMPS, R ;
MENAL, P .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (07) :2081-2095
[7]   Extensions of unit-regular rings [J].
Chen, HY .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) :2359-2364
[8]   REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS OF ALGEBRAIC SYSTEMS [J].
CRAWLEY, P ;
JONSSON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :797-&
[9]  
DISCHINGER F, 1976, CR ACAD SCI A MATH, V283, P571
[10]  
FUCHS L, 1970, INFINITE ABELIAN GRO, V1