Calculating Ramsey Numbers by Partitioning Colored Graphs

被引:5
作者
Pokrovskiy, Alexey [1 ]
机构
[1] ETH, Dept Math, Zurich, Switzerland
关键词
Ramsey theory; monochromatic subgraphs; partitioning graphs;
D O I
10.1002/jgt.22036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a new result about partitioning colored complete graphs and use it to determine certain Ramsey numbers exactly. The partitioning theorem we prove is that for k >= 1, in every edge coloring of K-n with the colors red and blue, it is possible to cover all the vertices with k disjoint red paths and a disjoint blue balanced complete (k + 1)-partite graph. When the coloring of K-n is connected in red, we prove a stronger result- that it is possible to cover all the vertices with k red paths and a blue balanced complete (k + 2)-partite graph. Using these results we determine the Ramsey number of an n-vertex path, P-n, versus a balanced complete t-partite graph ontm vertices, K-m(t), whenever m = 1 (mod n - 1). We show that in this case R(P-n, K-m(t)) = (t - 1)(n - 1) + t (m - 1) + 1, generalizing a result of Erdos who proved the m = 1 case of this result. We also determine the Ramsey number of a path P-n versus the power of a path P-n(t). We show that R(P-n, P-n(t)) = t (n - 1) + [n/t+1], solving a conjecture of Allen, Brightwell, and Skokan. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:477 / 500
页数:24
相关论文
共 50 条
  • [41] A PRECISE THRESHOLD FOR QUASI-RAMSEY NUMBERS
    Kang, Ross J.
    Pach, Janos
    Patel, Viresh
    Regts, Guus
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1670 - 1682
  • [42] A Ramsey-type problem and the Turan numbers
    Alon, N
    Erdos, P
    Gunderson, DS
    Molloy, M
    JOURNAL OF GRAPH THEORY, 2002, 40 (02) : 120 - 129
  • [43] Hypergraph Ramsey numbers of cliques versus stars
    Conlon, David
    Fox, Jacob
    He, Xiaoyu
    Mubayi, Dhruv
    Suk, Andrew
    Verstraete, Jacques
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (03) : 610 - 623
  • [44] Off-diagonal hypergraph Ramsey numbers
    Mubayi, Dhruv
    Suk, Andrew
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 125 : 168 - 177
  • [45] Size Ramsey numbers of forests versus brooms
    Si, Yuan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (05)
  • [46] Off-diagonal book Ramsey numbers
    Conlon, David
    Fox, Jacob
    Wigderson, Yuval
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 516 - 545
  • [47] A NOTE ON ON-LINE RAMSEY NUMBERS FOR QUADRILATERALS
    Cyman, Joanna
    Dzido, Tomasz
    OPUSCULA MATHEMATICA, 2014, 34 (03) : 463 - 468
  • [48] Multicolor list Ramsey numbers grow exponentially
    Fox, Jacob
    He, Xiaoyu
    Luo, Sammy
    Xu, Max Wenqiang
    JOURNAL OF GRAPH THEORY, 2022, 101 (03) : 389 - 396
  • [49] A Note on the Multi-Colored Bipartite Ramsey Number for Paths
    Qiao, Hanxiao
    Wang, Ke
    Renqian, Suonan
    Cuo, Renqing
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (03)
  • [50] Vertex Ramsey properties of randomly perturbed graphs
    Das, Shagnik
    Morris, Patrick
    Treglown, Andrew
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 983 - 1006