Calculating Ramsey Numbers by Partitioning Colored Graphs

被引:5
作者
Pokrovskiy, Alexey [1 ]
机构
[1] ETH, Dept Math, Zurich, Switzerland
关键词
Ramsey theory; monochromatic subgraphs; partitioning graphs;
D O I
10.1002/jgt.22036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a new result about partitioning colored complete graphs and use it to determine certain Ramsey numbers exactly. The partitioning theorem we prove is that for k >= 1, in every edge coloring of K-n with the colors red and blue, it is possible to cover all the vertices with k disjoint red paths and a disjoint blue balanced complete (k + 1)-partite graph. When the coloring of K-n is connected in red, we prove a stronger result- that it is possible to cover all the vertices with k red paths and a blue balanced complete (k + 2)-partite graph. Using these results we determine the Ramsey number of an n-vertex path, P-n, versus a balanced complete t-partite graph ontm vertices, K-m(t), whenever m = 1 (mod n - 1). We show that in this case R(P-n, K-m(t)) = (t - 1)(n - 1) + t (m - 1) + 1, generalizing a result of Erdos who proved the m = 1 case of this result. We also determine the Ramsey number of a path P-n versus the power of a path P-n(t). We show that R(P-n, P-n(t)) = t (n - 1) + [n/t+1], solving a conjecture of Allen, Brightwell, and Skokan. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:477 / 500
页数:24
相关论文
共 50 条
  • [1] Ramsey numbers for multiple copies of sparse graphs
    Sulser, Aurelio
    Trujic, Milos
    JOURNAL OF GRAPH THEORY, 2024, 106 (04) : 843 - 870
  • [2] Multicolor Ramsey Numbers For Complete Bipartite Versus Complete Graphs
    Lenz, John
    Mubayi, Dhruv
    JOURNAL OF GRAPH THEORY, 2014, 77 (01) : 19 - 38
  • [3] GALLAI-RAMSEY NUMBERS FOR RAINBOW TREES AND MONOCHROMATIC COMPLETE BIPARTITE GRAPHS
    Li, Luyi
    Li, Xueliang
    Mao, Yaping
    Si, Yuan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [4] Ramsey Numbers of Trails
    Osumi, Masatoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105A (09) : 1235 - 1240
  • [5] Ramsey Numbers of Trails
    Osumi, Masatoshi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2022, E105 (08)
  • [6] List Ramsey numbers
    Alon, Noga
    Bucic, Matija
    Kalvari, Tom
    Kuperwasser, Eden
    Szabo, Tibor
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 109 - 128
  • [7] Ordered Ramsey numbers
    Conlon, David
    Fox, Jacob
    Lee, Choongbum
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 353 - 383
  • [8] Sidon-Ramsey and Bh-Ramsey numbers
    Espinosa-Garcia, Manuel A.
    Montejano, Amanda
    Roldan-Pensado, Edgardo
    Suarez, J. David
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [9] On Geometric Graph Ramsey Numbers
    Karolyi, Gyula
    Rosta, Vera
    GRAPHS AND COMBINATORICS, 2009, 25 (03) : 351 - 363
  • [10] On the Ramsey numbers of daisies II
    Sales, Marcelo
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (06) : 742 - 768