Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliata subsp. australis

被引:30
作者
Huang, Hui [1 ,2 ]
Liang, Juan [1 ]
Tan, Qi [1 ]
Ou, Linfeng [1 ]
Li, Xiaolin [3 ]
Zhong, Caihong [1 ]
Huang, Huilin [1 ]
Moller, Ian Max [4 ]
Wu, Xianjin [1 ]
Song, Songquan [1 ,5 ]
机构
[1] Huaihua Univ, Coll Biol & Food Engn, Key Lab Res & Utilizat Ethnomed Plant Resources H, Huaihua 418000, Peoples R China
[2] Chinese Acad Sci, Kunming Inst Bot, Kunming 650201, Yunnan, Peoples R China
[3] China Acad Chinese Med Sci, Natl Resource Ctr Chinese Mat Med, State Key Lab Breeding Base Dao di Herbs, Beijing 100700, Peoples R China
[4] Aarhus Univ, Dept Mol Biol & Genet, DK-4200 Slagelse, Denmark
[5] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China
基金
美国国家科学基金会;
关键词
READ ALIGNMENT; OIL BODIES; GENES; IDENTIFICATION; ANNOTATION; RETROTRANSPOSONS; CAROTENOIDS; OLEOSINS; SAPONINS; DATABASE;
D O I
10.1038/s41438-020-00458-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Akebia trifoliata subsp. australis is a well-known medicinal and potential woody oil plant in China. The limited genetic information available for A. trifoliata subsp. australis has hindered its exploitation. Here, a high-quality chromosome-level genome sequence of A. trifoliata subsp. australis is reported. The de novo genome assembly of 682.14Mb was generated with a scaffold N50 of 43.11Mb. The genome includes 25,598 protein-coding genes, and 71.18% (485.55Mb) of the assembled sequences were identified as repetitive sequences. An ongoing massive burst of long terminal repeat (LTR) insertions, which occurred similar to 1.0 million years ago, has contributed a large proportion of LTRs in the genome of A. trifoliata subsp. australis. Phylogenetic analysis shows that A. trifoliata subsp. australis is closely related to Aquilegia coerulea and forms a clade with Papaver somniferum and Nelumbo nucifera, which supports the well-established hypothesis of a close relationship between basal eudicot species. The expansion of UDP-glucoronosyl and UDP-glucosyl transferase gene families and beta-amyrin synthase-like genes and the exclusive contraction of terpene synthase gene families may be responsible for the abundant oleanane-type triterpenoids in A. trifoliata subsp. australis. Furthermore, the acyl-ACP desaturase gene family, including 12 stearoyl-acyl-carrier protein desaturase (SAD) genes, has expanded exclusively. A combined transcriptome and fatty-acid analysis of seeds at five developmental stages revealed that homologs of SADs, acyl-lipid desaturase omega fatty acid desaturases (FADs), and oleosins were highly expressed, consistent with the rapid increase in the content of fatty acids, especially unsaturated fatty acids. The genomic sequences of A. trifoliata subsp. australis will be a valuable resource for comparative genomic analyses and molecular breeding.
引用
收藏
页数:15
相关论文
共 91 条
[1]   Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula [J].
Achnine, L ;
Huhman, DV ;
Farag, MA ;
Sumner, LW ;
Blount, JW ;
Dixon, RA .
PLANT JOURNAL, 2005, 41 (06) :875-887
[2]   Ab initio gene identification:: prokaryote genome annotation with GeneScan and GLIMMER [J].
Aggarwal, G ;
Ramaswamy, R .
JOURNAL OF BIOSCIENCES, 2002, 27 (01) :7-14
[3]   The Amborella Genome and the Evolution of Flowering Plants [J].
Albert, Victor A. ;
Barbazuk, W. Bradley ;
dePamphilis, Claude W. ;
Der, Joshua P. ;
Leebens-Mack, James ;
Ma, Hong ;
Palmer, Jeffrey D. ;
Rounsley, Steve ;
Sankoff, David ;
Schuster, Stephan C. ;
Soltis, Douglas E. ;
Soltis, Pamela S. ;
Wessler, Susan R. ;
Wing, Rod A. ;
Albert, Victor A. ;
Ammiraju, Jetty S. S. ;
Barbazuk, W. Bradley ;
Chamala, Srikar ;
Chanderbali, Andre S. ;
dePamphilis, Claude W. ;
Der, Joshua P. ;
Determann, Ronald ;
Leebens-Mack, James ;
Ma, Hong ;
Ralph, Paula ;
Rounsley, Steve ;
Schuster, Stephan C. ;
Soltis, Douglas E. ;
Soltis, Pamela S. ;
Talag, Jason ;
Tomsho, Lynn ;
Walts, Brandon ;
Wanke, Stefan ;
Wing, Rod A. ;
Albert, Victor A. ;
Barbazuk, W. Bradley ;
Chamala, Srikar ;
Chanderbali, Andre S. ;
Chang, Tien-Hao ;
Determann, Ronald ;
Lan, Tianying ;
Soltis, Douglas E. ;
Soltis, Pamela S. ;
Arikit, Siwaret ;
Axtell, Michael J. ;
Ayyampalayam, Saravanaraj ;
Barbazuk, W. Bradley ;
Burnette, James M., III ;
Chamala, Srikar ;
De Paoli, Emanuele .
SCIENCE, 2013, 342 (6165) :1467-+
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]  
[Anonymous], WTDBG PACKAGE
[6]  
[Anonymous], 2015, PHARMACOPOEIA PEOPLE
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   Physiological and developmental regulation of seed oil production [J].
Baud, Sebastien ;
Lepiniec, Loic .
PROGRESS IN LIPID RESEARCH, 2010, 49 (03) :235-249
[9]   Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications [J].
Bhatla, S. C. ;
Kaushik, V. ;
Yadav, M. K. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :293-300
[10]   GeneWise and genomewise [J].
Birney, E ;
Clamp, M ;
Durbin, R .
GENOME RESEARCH, 2004, 14 (05) :988-995