Solutions of multi-component NLS models and Spinor Bose-Einstein condensates

被引:32
作者
Gerdjikov, V. S. [1 ]
Kostov, N. A. [1 ]
Valchev, T. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
基金
美国国家科学基金会;
关键词
Bose-Einstein condensates; Integrable systems; Soliton models; DRESSING METHOD; EQUATIONS;
D O I
10.1016/j.physd.2008.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three- and five-component nonlinear Schrodinger-type models, which describe spinor Bose-Einstein condensates (BEC's) with hyperfine structures F = 1 and F = 2, respectively, are studied. These models for particular values of the coupling constants are integrable by the inverse scattering method. They are related to symmetric spaces of BD.I-type similar or equal to SO(2r + 1)/SO(2) x SO(2r - 1) for r = 2 and r = 3. Using conveniently modified Zakharov-Shabat dressing procedure we obtain different types of soliton solutions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1306 / 1310
页数:5
相关论文
共 23 条
[1]  
Ablowitz M.J., 2004, LONDON MATH SOC LECT
[2]  
[Anonymous], HAMILTONIAN APPROACH
[3]  
[Anonymous], 1984, THEORY SOLITONS INVE
[4]   Phase diagrams of F=2 spinor Bose-Einstein condensates -: art. no. 033607 [J].
Ciobanu, CV ;
Yip, SK ;
Ho, TL .
PHYSICAL REVIEW A, 2000, 61 (03) :5-336075
[5]   NON-LINEAR SCHRODINGER-EQUATIONS AND SIMPLE LIE-ALGEBRAS [J].
FORDY, AP ;
KULISH, PP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) :427-443
[6]  
Gerdjikov V. S., 2005, GEOMETRY INTEGRABILI, P78
[7]  
Gerdjikov V.S., 2006, GEOMETRY INTEGRABILI, P11
[8]   Multicomponent NLS-type equations on symmetric spaces and their reductions [J].
Gerdjikov, VS ;
Grahovski, GG ;
Kostov, NA .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (02) :1147-1156
[10]   N-wave interactions related to simple Lie algebras.: Z2-reductions and soliton solutions [J].
Gerdjikov, VS ;
Grahovski, GG ;
Ivanov, RI ;
Kostov, NA .
INVERSE PROBLEMS, 2001, 17 (04) :999-1015