Positive solutions for nonlinear elliptic problems with dependence on the gradient

被引:56
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Pseudomonotone map; Strongly coercive map; Leray-Schauder alternative principle; Compact map; Nonlinear regularity; Maximum principle; EQUATIONS; EXISTENCE;
D O I
10.1016/j.jde.2017.03.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a quasilinear Neumann problem with a differential operator and a reaction term, both dependent on u and Du. Using topological methods together with suitable truncation and comparison techniques, we show that the problem has at least one positive smooth solution. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1451 / 1476
页数:26
相关论文
共 16 条
[1]   SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS [J].
AMANN, H ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (05) :779-790
[2]  
Brezis H., 1977, Commun. Partial Differ. Equ., V2, P601, DOI 10.1080/03605307708820041
[3]  
CHIPOT M, 2000, BIRK ADV TEXT, pR7
[4]  
De Figueiredo D, 2004, DIFFER INTEGRAL EQU, V17, P119
[5]  
Gasinski L., 2014, EXERCISES ANAL 1
[6]  
Gasinski L., 2006, NONLINEAR ANAL
[7]   Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5747-5772
[8]   Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques [J].
Girardi, M ;
Matzeu, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :199-210
[9]  
Hu S. H., 1997, Handbook of Multivalued Analysis, Math. Appl., V419
[10]   NONLINEAR NEUMANN EQUATIONS DRIVEN BY A NONHOMOGENEOUS DIFFERENTIAL OPERATOR [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1055-1078