Nanoporous Intermetallic Pd3Bi for Efficient Electrochemical Nitrogen Reduction

被引:165
作者
Wang, Xuejing [1 ]
Luo, Min [2 ]
Lan, Jiao [1 ]
Peng, Ming [1 ]
Tan, Yongwen [1 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Shanghai Polytech Univ, Dept Phys, Shanghai 201209, Peoples R China
关键词
electrocatalytic nitrogen reduction; intermetallics; nanoporous alloys; Pd; Bi-3; HYDROGEN EVOLUTION; AMBIENT CONDITIONS; BORON-NITRIDE; FIXATION; ALLOY; N-2;
D O I
10.1002/adma.202007733
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic nitrogen reduction at ambient temperature is a green technology for artificial nitrogen fixation but greatly challenging with low yield and poor selectivity. Here, a nanoporous ordered intermetallic Pd3Bi prepared by converting chemically etched nanoporous PdBi2 exhibits efficient electrocatalytic nitrogen reduction under ambient conditions. The resulting nanoporous intermetallic Pd3Bi can achieve high activity and selectivity with an NH3 yield rate of 59.05 +/- 2.27 mu g h(-1) mg(cat)(-1) and a Faradaic efficiency of 21.52 +/- 0.71% at -0.2 V versus the reversible hydrogen electrode in 0.05 m H2SO4 electrolyte, outperforming most of the reported catalysts in electrochemical nitrogen reduction reaction (NRR). Operando X-ray absorption spectroscopy studies combined with density functional theory calculations reveal that strong coupling between the Pd-Bi sites bridges the electron-transfer channel of intermetallic Pd3Bi, in which the Bi sites can absorb N-2 molecules and lower the energy barrier of *N-2 for N-2 adsorption and activation. Meanwhile, the intermetallic Pd3Bi with bicontinuous nanoporous structure can accelerate the electron transport during the NRR process, thus improving the NRR performance.
引用
收藏
页数:8
相关论文
共 46 条
[1]  
Ahsan Z, 2024, ADV ENERGY MATER, V14
[2]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[3]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[4]  
Choi J., 2019, NAT CATAL, V2, P448
[5]  
Cook E.R., 2015, SCI ADV, V1
[6]  
Davis LE., 1979, HDB XRAY PHOTOELECTR
[7]   Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers [J].
Gao, Wenbo ;
Guo, Jianping ;
Wang, Peikun ;
Wang, Qianru ;
Chang, Fei ;
Pei, Qijun ;
Zhang, Weijin ;
Liu, Lin ;
Chen, Ping .
NATURE ENERGY, 2018, 3 (12) :1067-1075
[8]   Nanoporous Metals for Heterogeneous Catalysis: Following the Success of Raney Nickel [J].
Gao, Yanxiu ;
Ding, Yi .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (41) :8845-8856
[9]   Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from CO-Rich Synthesis Gas [J].
Gentzen, Manuel ;
Doronkin, Dmitry E. ;
Sheppard, Thomas L. ;
Zimina, Anna ;
Li, Haisheng ;
Jelic, Jelena ;
Studt, Felix ;
Grunwaldt, Jan-Dierk ;
Sauer, Jorg ;
Behrens, Silke .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) :15655-15659
[10]   Production of butylamine in the gas phase hydrogenation of butyronitrile over Pd/SiO2 and Ba-Pd/SiO2 [J].
Hao, Y. ;
Li, M. ;
Cardenas-Lizana, F. ;
Keane, M. A. .
CATALYSIS STRUCTURE & REACTIVITY, 2015, 1 (03) :132-139