Li-rich layered cathode microparticle 0.4Li2MnO3•0.6Li(Mn0.43Ni0.36Co0.21)O2 decorated with nanosized grains

被引:5
作者
Seo, Jung Yoon [1 ,2 ]
Sung Nam Lim [3 ]
Park, Seung Bin [1 ]
Jung, Dae Soo [4 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Natl NanoFab Ctr NNFC, Global Nanotechnol Dev Team, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Korea Inst Ind Technol, Micro Nano Scale Mfg Grp, 143 Hanggaulro, Ansan 15588, Gyeonggi Do, South Korea
[4] KICET, Energy & Environm Div, 101 Soho Ro, Jinju Si 52851, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Layered oxide cathode; Electrochemical performance; Energy efficiency; Spray pyrolysis; Lithium-ion battery; ELECTROCHEMICAL PROPERTIES; RATE CAPABILITY; PARTICLE-SIZE; CO ELECTRODES; SOL-GEL; LITHIUM; ION; COPRECIPITATION; PERFORMANCE; NANOPARTICLES;
D O I
10.2109/jcersj2.16217
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A lithium-rich layered cathode material [0.4Li(2)MnO(3)center dot 0.6Li(Mn0.43Ni0.36Co0.21)O-2)] containing nanosized grains (50-100 nm) was prepared from an aqueous precursor solution via a sequential two-step process composed of ultrasonic spray pyrolysis and post-calcination. The microsized lithium-rich layered composites show a high initial discharge capacity of 251 mAh g(-1) 1 at 0.1 C. The reversible capacities of 206 mAh g(-1) at 0.5C and 189 mAh g(-1) at 1C are obtained between 4.6 and 2.0V. These are comparable to the values reported previously for these materials, without the need for doping or surface modification. The improved electrochemical performance may have resulted from the presence of nanosized grains, which can lead to an improvement in electronic and ionic transport, and the homogeneously dispersed Li2MnO3 phase in the LiMO2 (M = Mn, Ni, Co) phase. These results suggest that spray pyrolysis is an effective technique for the preparation of multi-component composite materials and can be used to control the microstructure of the materials, ultimately improving the electrical performance. (C) 2017 The Ceramic Society of Japan. All rights reserved.
引用
收藏
页码:262 / 267
页数:6
相关论文
共 37 条
[1]   Enabling high energy density Li-ion batteries through Li2O activation [J].
Abouimrane, Ali ;
Cui, Yanjie ;
Chen, Zonghai ;
Belharouak, Ilias ;
Yahia, Hamdi B. ;
Wu, Huiming ;
Assary, Rajeev ;
Curtiss, Larry A. ;
Amine, Khalil .
NANO ENERGY, 2016, 27 :196-201
[2]   Surface characterization of electrodes from high power lithium-ion batteries [J].
Andersson, AM ;
Abraham, DP ;
Haasch, R ;
MacLaren, S ;
Liu, J ;
Amine, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1358-A1369
[3]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[4]   A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries [J].
Ates, Mehmet Nurullah ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A355-A363
[5]   Examining Hysteresis in Composite xLi2MnO3•(1-x)LiMO2 Cathode Structures [J].
Croy, Jason R. ;
Gallagher, Kevin G. ;
Balasubramanian, Mahalingam ;
Chen, Zonghai ;
Ren, Yang ;
Kim, Donghan ;
Kang, Sun-Ho ;
Dees, Dennis W. ;
Thackeray, Michael M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (13) :6525-6536
[6]   Effect of particle size on LiMnPO4 cathodes [J].
Drezen, Thierry ;
Kwon, Nam-Hee ;
Bowen, Paul ;
Teerlinck, Ivo ;
Isono, Motoshi ;
Exnar, Ivan .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :949-953
[7]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[8]   Lithium batteries To the limits of lithium [J].
Evarts, Eric C. .
NATURE, 2015, 526 (7575) :S93-S95
[9]   Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process [J].
Hou, Mengyan ;
Guo, Shaoshuai ;
Liu, Jinlong ;
Yang, Jun ;
Wang, Yonggang ;
Wang, Congxiao ;
Xia, Yongyao .
JOURNAL OF POWER SOURCES, 2015, 287 :370-376
[10]   Graphene-Based Nanocomposites for Energy Storage [J].
Ji, Liwen ;
Meduri, Praveen ;
Agubra, Victor ;
Xiao, Xingcheng ;
Alcoutlabi, Mataz .
ADVANCED ENERGY MATERIALS, 2016, 6 (16)